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The cone-guided fast ignition approach to Inertial Confinement Fusion re-

quires laser-accelerated relativistic electrons to deposit kilojoules of energy within

an imploded fuel core to initiate fusion burn. One obstacle to coupling electron en-

ergy into the core is the ablation of material, known as preplasma, by laser energy

proceeding nanoseconds prior to the main pulse. This causes the laser-absorption

surface to be pushed back hundreds of microns from the initial target surface;

thus increasing the distance that electrons must travel to reach the imploded core.

Previous experiments have shown an order of magnitude decrease in coupling into

surrogate targets when intentionally increasing the amount of preplasma. Addi-

tionally, for electrons to deposit energy within the core, they should have kinetic
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energies on the order of a few MeV, as less energetic electrons will be stopped

prior to the core and more energetic electrons will pass through the core without

depositing much energy. Thus a quantitative understanding of the electron energy

spectrum and how it responds to varied laser parameters is paramount for fast

ignition.

For the first time, this dissertation quantitatively investigates the accel-

eration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers

reduce the laser energy that reaches the target prior to the main pulse; drastically

reducing the amount of preplasma. Experiments were performed in a cone-wire

geometry relevant to fast ignition. These experiments irradiated the inner-tip of

a Au cone with the laser and observed electrons that passed through a Cu wire

attached to the outer-tip of the cone. The total emission of Kα x-rays is used

as a diagnostic to infer the electron energy coupled into the wire. Imaging the

x-ray emission allowed an effective path-length of electrons within the wire to be

determined, which constrained the electron energy spectrum.

Experiments were carried out on the ultra-high-contrast Trident laser at

Los Alamos National Laboratory and at the low-contrast Titan laser at Lawrence

Livermore National Laboratory. The targets were irradiated using these 1.054 µm

wavelength lasers at intensities from 1019 to 1020 W/cm2. The coupling of energy

into the Cu wire was found to be 2.7x higher when the preplasma was reduced

using high-contrast. Additionally, higher laser intensity elongated the effective

path-length of electrons within the wire, indicating that their kinetic energy was

higher.

To understand the physics behind laser-acceleration of electrons and to ex-

amine how this mechanism is affected by the presence of preplasma, simulations

were performed to model the laser interaction. This simulations modeled the inter-

action using a 0.1 to 3 µm exponential preplasma scale length for the high-contrast

cases and hydronamically simulated longer scale preplasma (∼25 µm) for the low-

contrast case. The simulations show that absorption of laser light increases from

only 20% with a 0.1 µm scale length to nearly 90% with a long low-contrast-type

preplasma. However, as observed in experiments, a smaller fraction of this ab-
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sorbed energy is transported to the diagnostic wire, which is due to an increased

distance that the electrons must travel to reach the wire and increase angular

divergence of the electrons. The simulations show that increasing the preplasma

scale length from 0.1 to 3 µm increases the average energy by a factor of 2.5x. This

is consistent with an increased interaction length over which the electrons can gain

energy from the laser.

The simulated electrons are compared with experimental data by injecting

them into another simulation modeling the transport of electrons through the cone-

wire target. This method quantitatively reproduced the experimentally measured

the Kα x-ray emission profiles in the high-contrast cases, which gives confidence in

the simulations and the generated electron distributions.

By showing that the reduction of preplasma increases coupling into surro-

gate targets this work shows a significant advantage for the fast ignition scheme.

Such work gives confidence to facilities that increasing the contrast of their laser

systems will increase electron coupling. Additionally, detailed investigation of

these high-contrast systems will aid researchers in understanding the effect that

preplasma has on the acceleration of electrons.
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1 Background of Work

1.1 Physics at Extreme Intensities with Short-

Pulse Lasers

In 1985, Donna Strickland and Gérard Mourou[1] applied a technique called

chirped-pulse amplification (CPA) to lasers. This method revolutionized laser

physics by opening the door to extremely high-intensities (> 1 PW[2]) and ex-

tremely short pulse lengths (∼ 30 fs[3]) . The CPA method stretches out the pulse

in time before amplification to allow a large amount of energy (> 1 kJ[4]) to be

gained. Then after amplification, the pulse is re-compressed to a short pulse length

with extremely high intensity.

As an example of these high-intensity lasers, let us consider the Titan laser

system at the Lawrence Livermore National Laboratory. This laser is capable of

achieving peak intensities of 1020 W/cm2. The laser energy is 150 J with a pulse

duration of 0.7 ps, thus is has a power exceeding 200 TW. Thus the average power

of the laser exceeds the average power consumption on Earth (16 TW in 2008[5]);

a piece of trivia often cited for tour groups. The laser intensity produced on Titan

creates electric fields on the order of 1013 V/m, which are capable of ionizing

atoms to high charge states by ripping the electrons from their shells. Ionization

calculations (explained in detail in Section 2.2.1) show that such fields are capable

of ionizing Gold to an ionization state above 40+. Thus, these lasers create a

plasma instantly, where ever they are incident.

An important feature of these lasers is the acceleration of electrons to rel-

ativistic energies. This acceleration is due not only to the strong electric fields of

1
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the laser, but also to the magnetic fields due to the v × B force, which becomes

effective as the electrons approach the speed of light.

The lasers are capable of coupling 20-40% of the laser energy into electrons[6]

with kinetic energies above 1 MeV. At such energies the electrons can propagate

large distances into solid density targets. For example, a 1 MeV electron has a

range over 1 mm in solid Al. This large range, along with the fast speed and short

duration of the pulse, means that these electrons can isochorically heat materials to

temperatures above 100,[7] or even 1000[8] eV. Such heating at high-density creates

matter in the warm dense matter (WDM) regime, which is interesting in the study

of planetary and astrophysical research.[9]

When accelerated in a thin (< 100 µm) foil, the electrons can create strong

static electric fields when escaping from the target into vacuum. The large charge

imbalance can create an electric field up to TV/m; so strong that it ionizes material

and accelerates the charged ions.[10–17] Such a method has been used to accelerate

protons to energies above 60 MeV.[18] By modifying the target surface, the electric

fields can also be used to focus the ion beam to 10 µm diameter spots.[19] The

accelerated ions can potentially be used for medical oncology treatments or to

produce high energy neutron sources.[20–22]

These high-intensity lasers can create extremely high electron currents. If

we consider the Titan laser system, average electron energies are on the order of 1

MeV, with 150 J of laser energy and a conversion efficiency of 20%, and the pulse

length about 700 fs in duration. This leads to a peak current of over 10 MA. To get

an idea of the magnitude of these currents, we can calculate the Alfvén current.[23]

This is the current at which a beam of electrons generates a strong enough magnetic

field to deflect the beam onto its own axis. For a 1 MeV electron beam the Alfvén

current 1 is 33 kA. Thus the current generated by the Titan laser system is 300

times greater, and would not be able to propagate if not for a counter-propagating

background current that allows for current quasi-neutrality.[24]

These high current and high energy-content relativistic electron beams were

identified as a potential mechanism to ignite an inertial confinement fusion reac-

1Alfvén current is calculated at IA[A] = E
30 eV , where IA is the Alfvén current and E is the

energy of electrons.[23]
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tion. This idea is called Fast Ignition,[25] but to explain it, we must first discuss the

conventional method of central hot spot (CHS) inertial confinement fusion (ICF)

and related subjects.

1.2 Inertial Confinement Fusion

Nuclear fission, the splitting of atoms, was first recognized by Meitner and

Frisch[26] in 1939 as an explanation for the formation of barium isotopes upon the

bombardment of uranium with neutrons.[27] Less than 5 years later, in 1942, the

first sustained nuclear fission reaction was demonstrated by Enrico Fermi at the

University of Chicago housed within a large fabric tent on Squash court.[28] On

the other hand, Fusion, the joining of atoms, had been discovered even earlier in

1933 by the students of Lord Ernest Rutherford, who famously stated:

The energy produced by the breaking down of the atom is a very poor kind of

thing. Anyone who expects a source of power from the transformation of these

atoms is talking moonshine. Lord Ernest Rutherford, 1933[29]

Rutherford was describing fusion induced by protons incident on lithium

atoms, and perhaps he had some prescience. For now, nearly 80 years later not

one fusion power plant has been created! Though fortunately, fusion research

continues to be an active and exciting area of research. The fundamental difference

between fusion and fission lies in the fact that energy creating fission can be induced

with uncharged neutrons that easily penetrate the nucleus. Fusion, on the other

hand, requires the joining of two charged nuclei, which therefore must be energetic

enough to tunnel through the coulomb barrier. This requires heating the fuel to

temperatures near 10 keV (over 11 million degrees Kelvin).

Efusion =
Mi

m̄i

×Q× 〈σv〉 × niτ (1.1)

To calculate the energy produced by fusion reactions, we calculate the num-

ber of reactions that occur and multiply the energy that each reaction produces,

Q. The equation (1.1) provides a relation for the energy produced per a given

mass Mi of fuel through simple zero-dimensional analysis.[30] Here mi is a average
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mass per ion of the fuel, Q is the energy released by the fusion reaction, ni is

the cumulative density of the fuel, and τ is the amount of time that the fuel is

confined and has the required temperature to produce fusion. The reactivity 〈σv〉
measures the number of reactions that occur per unit density and per unit time.

It is calculated by integrating the thermal velocity distribution fM(v) of the ions

multiplied by the ion velocity v and the cross-section of the reaction σ(v); math-

ematically 〈σv〉 =
∫
fM(v)σ(v)vdv. For reasons related to both the cross-section

of the reaction and the thermal distribution of the ions, the reactivity is a strong

function of temperature, as seen in Figure 1.1.

Figure 1.1: Reactivity, 〈σv〉, for various fusion reactions. Plotted using the fitting

parameters from Bosch and Hale.[31]

From equation (1.1), we know that a reaction with a high Q-value and

high reactivity is desired for fusion energy production. Due to its high Q-value

of 17.6 MeV and high reactivity at relatively low temperatures (see Figure 1.1),

the DT (deuterium-tritium) reaction is generally considered the first generation

fuel for fusion energy. The energetic products of this reaction are a neutron and

an α-particle, which receive 3.5 MeV and 14.1 MeV, respectively, when reaction

temperatures are much less than the Q-value.

2
1D + 3

1T→ α (3.5 MeV) + n (14.1 MeV) (1.2)
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Once an appropriate fuel and reaction temperature (to determine 〈σv〉) are

chosen, the energy production is a function of only the density ni and the confine-

ment time τ . The multiple niτ is a useful value in determining the effectiveness of

fusion production in a plasma. This value also is found in the Lawson criterion,[32]

which was originally developed for magnetic fusion and relates the energy created

by fusion to the energy lost from the system (e.g. radiative losses, diffusive losses).

Obviously, large amount of fusion energy are desired, which requires high values

of niτ .

The two major approaches to fusion are magnetic confinement fusion (MCF)

and inertial confinement fusion (ICF), which use magnetic fields and the inertia of

an imploding capsule to confine the fuel, respectively. While both methods must

achieve high values of niτ , the approach in MCF uses low density (∼ 1014 cm−3)

and long confinement times of seconds to hours, while the ICF approach is orders

of magnitude higher in density (∼ 1025 cm−3), but orders of magnitude lower in

confinement times on the order of picoseconds.[30]

In this dissertation, we will focus only on ICF, where the exterior a small

capsule is heated so that outer material is ablated, creating a rocket-like effect

that creates a spherical implosion, compressing the DT fuel to 100’s of times solid

density. At peak compression the target achieves a mass density of ρ = mini with

radius R. The confinement time is given by the time it takes for information to

travel from the center to the edges of the compressed fuel, since the information

transfer occurs at the speed of sound, cs, giving a confinement time of τ = R/cs.

Thus in ICF we see a relationship between niτ and ρR as shown in equation (1.3).

This value is related to the confinement time, so higher values of ρR will create

more fusion energy. Additionally, a larger value of ρR will allow the α-particles to

deposit more energy along a given distance.

ρR =
1

mics
niτ (1.3)

One might assume that in ICF the compressed fuel is heated to a uniform

temperature through the compression of the capsule. However, the external heating

of the fuel is too inefficient to produce a significant gain in energy through this
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method. Instead, only a small region within the fuel is heated externally and the

α-particles produced by fusion reactions in the hot spot propagate through the

compressed fuel to heat the rest of it. This is known as Central Hot Spot ignition

(CHS), as the region in the center of the fuel is called the hot spot.

This hot spot is relatively low density and is surrounded by denser fuel. In

order to reach fusion temperatures the hot spot must get much hotter than the

surrounding colder, dense fuel. As the capsule reaches stagnation, it is pressure

equilibrium with the surrounding fuel because its sound speed is much faster than

the stagnation time. Thus this method is known as isobaric ignition. In order to

achieve a high amount of compression and heating, the capsule must be compressed

incredibly uniformly. This requires extremely uniform target manufacturing and

extremely symmetric target heating during the implosion. A method that aims to

increase the gain from ICF as well as reduce this uniformity requirements is known

as Fast Ignition.

1.3 Fast Ignition

The fast ignition (FI) concept was proposed by Tabak, et al. in 1994.[25]

This concept separates the implosion phase of the capsule from the heating phase

of the fuel. As in CHS, the implosion is driven using nanosecond lasers. However,

the imploded fuel is then heated by a burst of electrons generated by a laser pulse

around 10 ps. Because the implosion does not need to create a compressed hot

spot, the symmetry requirements for the implosion are greatly reduced.

Additionally the capsule is ignited isochorically instead of isobarically, as

illustrated in Figure 1.2. In an isochoric ignition, like in FI, the mass of the target

is contained in an imploded sphere, where as in CHS the majority of the mass is

contained in a compressed shell at some radius from the center. Geometrically,

this creates a higher ρR, for a given density and mass, simply because more of the

fuel is closer to the center. For instance, a factor of 4 increase in ρR in the FI case

versus the CHS case is expected.[30]

In FI, the heating of the fuel must occur before the compressed fuel expands.
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Figure 1.2: Density maps of the Isochoric Fast Ignition (FI) implosion (a) and the

Central Hot Spot (CHS) implosion (b), and plots of the density ρ and temperature

T of the implosion for the FI (c) and CHS (d) cases.

The time for this to happen is determined by calculating how long information,

moving at the sound speed, takes to travel from the center of the compressed spot

to its boundary. Ignition conditions achieving fusion gain using isochoric ignition

are given by Atzeni and Meyer-ter-Vehh[30] as ρR = 0.5 g cm−2 and T = 12 keV,

which requires an input energy of E = (850 g cm−3/ρ)2 kJ. To attain the proper

ρR for a density of 300 g/cm3 the compressed spot must be around 20 µm. With

the given temperature of 12 keV the plasma will have a sound speed of about 108

cm/s, which gives a hydrodynamic breakup time of about 15 ps. Also, this requires

around 18 kJ of deposited electron energy.[33]

The gain calculated by Atzeni and Meyer-ter-Vehh[30] for isochoric Fast

Ignition and isobaric central hot spot ignition are given by (1.4) and (1.5), respec-

tively. Here G is the gain and Efuel is the total internal energy in the compressed

fuel, which is related to the nanosecond driver energy. The isentrope parameter is

α, which is a measurement of the fuel entropy compared to cold fermi-degenerate
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conditions, and is usually from 1.5 to 4.[30]

GFI = 19.2× 103

(
Efuel[MJ ]

α3

)0.4

(1.4)

GCHS = 5.6× 103

(
Efuel[MJ ]

α3

)0.3

(1.5)

Figure 1.3: Gain curves for ignition for isochoric Fast Ignition (FI) and isobaric

Central Hot Spot (CHS) ignition in solid and dotted lines, respectively. These are

plotted using functions from[30] with α=1.5.

The gain curves for FI and CHS are plotted in Figure 1.3. These show that

the gain for FI is about 2 to 3 times higher at fuel energies between 5 to 50 kJ.

Additionally, for a given gain the energy required is a factor of 7 to 10 times lower.

This suggests that FI may be possible with lower nanosecond driver energies and

potentially less capital investment when building fusion power plants.

While the advantages of FI are promising, a significant uncertainty is in

how the picosecond laser will accelerate electrons and how well these electrons are

able to deposit energy within the core.

During the capsule implosion, material will be ablated from the capsule

and extend many millimeters from the compressed core. Since the compressed

core is only around 20 µm, the solid angle of this core is very small if electrons

are accelerated from millimeter distances. Thus a way must be found to allow

the laser to get much closer to the core before it interacts with the plasma. The

initial idea proposed by Tabak[25] was to use another laser to bore a hole through
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this ablated plasma. However, this requires two lasers and makes the process

more complicated. Presently, the most prevalent idea is to use a cone[34–36] as

shown in Figure 1.4. The cone keeps a pathway clear of ablated plasma during

the implosion so that the short pulse laser can propagate unimpeded to a point

near to the imploded core. This non-symmetric geometry make the implosion

more complicated than a conventional spherically symmetric implosion. However,

hydrodynamic simulations have shown that compression is still feasible in this cone-

geometry[37] and can create an imploded core of around 300 g/cm3 at a 100 µm

stand-off distance from the outer cone-tip.

(a) (b) 

Figure 1.4: (a) FI implosion scheme using an external source to provide compres-

sion, shown as lasers in gray, and (b) a high-intensity short-pulse laser to produce

relativistic electrons to provide the heating for ignition.

In such an implosion the width of the core is around 20 µm and the distance

that electrons must travel to reach the core is around 100 µm. Thus electrons that

are accelerated at large angles away from the core will not be able to deposit useful

energy for heating.

If we suppose that the electrons at 100 µm from a 20 µm radius core are

a point source with a divergence half angle of 45◦, then only around 5% of the

electrons pass through the solid angle of the core.2. Since the laser energy to

generate electrons is limited, such an efficiency in unacceptable. Therefore the

2This supposes an isotropic electron divergence for electrons with angles below 45◦, giving a
solid angle of solid angle is π(2−

√
2).
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electron divergence should be as low as possible.

An additional consideration is the energy spectrum of these electrons. A

20 µm radius core of 300 g/cm3 means that electrons reaching the core must deposit

a majority of their energy within an areal density ρz ∼ 1 g/cm2. The collisional en-

ergy deposition of electrons within compressed plasma was investigated by Atzeni,

et al.[33] This work showed the penetration distance P90% over which electrons de-

posit 90% of their energy in the compressed fuel is given by (1.6), where E0 is the

electron kinetic energy in MeV and ρ is the mass density of the fuel. This reduces

to the linear relation (1.7) for E0 between 1.5 and 5 MeV at ρ = 300 g/cm3.

P90%[g/cm2] ' 0.57
E2

0

0.66E0 + 0.34

(
ρ

300g/cm3

)0.066

(1.6)

' 0.7E0 (1.7)

These relations give penetration distances from 0.2 and 8.2 g/cm2 for 0.5

and 10 MeV electrons, respectively. An optimal penetration distance is found

around 1.5 MeV. Electrons with higher energy than this will still deposit energy

within the core, but at a lowered efficiency. This exercise show that the electron

energy spectrum is also an important consideration in fast ignition research and

that electrons in the few MeV range are desirable.

A final consideration is the efficiency of laser coupling into electrons reach-

ing the cone-tip, which should be maximized due to a limited amount of laser

energy. This efficiency consists of two main components, the efficiency of electron

acceleration and the fraction of electrons that reach the cone-tip. A major obstacle

to this latter component is preplasma filling of the cone. Preplasma comes from

material that is ablated by the laser often many nanosecond prior to the main

pulse. This can push the laser-interaction surface hundreds of microns[38, 39] away

from the initial target surface, which dramatically reduces the amount of electron

energy reaching the cone-tip.[40, 41]

Thus, in the cone-guided fast ignition scheme, there are three major charac-

teristics of the electron source that must be understood and optimized to efficiently

couple energy into the fuel core. These are the divergence, energy spectrum and
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laser-to-cone-tip coupling efficiency. This dissertation will focus on the latter two

topics. The optimization of electron energy reaching the cone-tip will be explored

using a laser where the amount of preplasma has been dramatically reduced, lead-

ing to electron acceleration occurring much closer to the cone-tip. Concurrently,

the energy spectrum accelerated by these lasers will be assessed. Both studies will

to generate a quantitative understanding using a combination of experiments and

simulations.

1.4 Studies of Preplasma Effects on Electrons

Acceleration

Fast ignition (FI) research requires high-intensity (>1019 W/cm2), high-

energy (>100 J) lasers. Such lasers usually have a finite amount of laser energy,

called the prepulse, that proceeds nanoseconds prior to the main pulse. Even if

the prepulse is a hundred million (10−8) times less intense that the main pulse,

the intensity is still high energy to ablate a large amount of preplasma. In FI, the

cone-walls will contain this ablated preplasma in the lateral dimension and thus

the outward extent of the preplasma will be amplified.

The effect of preplasma on accelerated electrons in a cone geometry was

observed by VanWoerkom, et al. using electron-induced x-ray emission to image a

Cu cone.[38] The emission from the cone showed that electrons were being gener-

ated hundreds of microns away from the inner-tip of the cone, instead of near to

the cone-tip as expected in a preplasma-free interaction. This preplasma investi-

gation was progressed by MacPhee et al. again using x-ray imaging to observed

the detrimental effect of preplasma.[40] In this work, the energy of the prepulse

was intentionally increased to raise the preplasma level. This showed that the

peak of x-ray emission was pushed back from 50 µm to 200 µm by increasing the

preplasma energy from 7.5 to 100 mJ. The experimental data was explained in

detail using simulations that showed the development of laser filaments within the

preplasma;[40, 42] an effect that increased substantially at higher levels of preplasma.

During the same period as the work performed by VanWoerkom, et al.[38]
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in cone-targets, Baton, et al.[39] investigated the role of preplasma using cone

and cone-like geometries attached to a Cu foil. In these experiments, the x-ray

emission to the Cu foil was imaged to infer the coupling efficiency and spatial

extent of the electrons in the foil. This work showed that a cone-like geometry

enhanced the effect of preplasma, which prevented electrons from coupling into the

foil. Additionally, this work also showed an encouraging result: by using a laser

with extremely low prepulse energy the coupling efficiency could be increased. For

this data, the electrons coupling in the foil was identical for the conical and planar

targets, indicating that the preplasma was significantly reduced leading to more

efficiency electron coupling.

Until this point, the electron coupling decrease due to preplasma had only

been evaluated qualitatively. To perform quantitative analysis, work was per-

formed by a group including the author to quantitatively evaluate the spectrum

and total energy of electrons passing through the cone-tip.[41, 43] The experiment

was performed using a Cu wire attached to the tip of the cone to infer the electron

spectrum using the induced x-ray emission from the wire. This showed that by

increasing the prepulse energy by a factor of 100x resulted in a 10x decrease in

the coupling of energy into the wire. The electron energy spectrum within the

wire was inferred using simulations to model the transport of electrons through

the cone-wire target. A broad parameter space was studied using injected electron

distributions.[43]

This study of the disadvantages of preplasma led our group to investigate

the potential advantage of reducing the preplasma. The work in this dissertation

will expand on our previous work by quantitatively investigating the electron spec-

trum and coupling when prepulse levels are dramatically reduced. Additionally, an

laser-plasma-interaction simulations will allow the electron distribution to be inves-

tigated at the fundamental level, while comparing quantitatively to experimental

data.
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1.5 Electron Source Determination and Cone-

Wire Targets

The first work to describe the acceleration of electrons by relativistic inten-

sity lasers was done by Wilks, et al .[44] Here relativistic intensity means that the

electrons are traveling at nearly the speed of light and are therefore influenced by

both the electric and magnetic field of the laser. One conclusion from this paper

was that the kinetic energy of the electrons should be related to the laser intensity

I and the laser wavelength λ as a function of
√
Iλ2.

Much work to understand the validity and applicability of this scaling has

been performed. Some of the methods used include measurement of accelerated

ions from the rear of a target,[45] of electrons that have escaped from the target,[46]

and of bremsstrahlung radiation created by electrons passing through a relatively

thick target.[6, 47]

The technique used to measure electron energy spectrum in this dissertation

is the imaging of x-rays induced by electrons traveling through a free-standing

wire. The entire length of the wire is imaged, allowing the effective path-length of

electrons to be measured and used to infer their energy. Previous experiments have

used the imaged wire technique and we will build on this knowledge significantly.

One might assume that inferring electron spectrum from their effective path-length

is a relatively simple inversion problem, considering that the stopping power of

electrons in solid-density materials is well known.[48] However, in practice, this

is significantly more difficult due to non-linear collective effects (e.g. resistive

stopping) within the wire. The reason is that an incredible large amount of charge

density and energy is accelerated by the laser. As noted in some of the early studies

of these wires, the electrons create strong electric and magnetic fields,[49, 50] which

dominate the electron transport and make a simple inversion of the path-length

unfeasible.

Some of the first attempts to deduce the electron energy spectrum from the

x-ray emission from wires[51, 52] used simple one-dimensional numerical models.[53]

Such models extended simple collisional stopping calculations, as they also included
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self-generated resistive fields created by ohmic inhibition[24] during transport. This

approach was expanded using 2D simulations including the self-consistent genera-

tion of electric and magnetic fields.[54] The major deficiency in these models was

the lack of self-consistent modeling of the vacuum boundary of the wire. In a wire

geometry, many electrons escape the target and cause large electric and magnetic

fields to be generated along the surface of the wire. The electric potential created

on these targets is a few MV. This causes lower energy electrons to be trapped

within the wire, but allows the higher energy electrons to escape. Only electrons

that stay within the wire contribute to the x-ray emission, thus an accurate mod-

eling of the vacuum boundary is very important.[46]

To model the vacuum boundary accurately and to reproduce experimen-

tal measurements, our group used the direct-implict particle-in-cell code LSP.[55]

Simulations were run in 2D cylindrical geometry and modeled the full-scale geom-

etry of the wire.[41, 43] The generation of electric and magnetic fields were included

self-consitently using Maxwell’s equations and the Lorentz forces to model fields

and forces within and outside of the wire. In this work, electrons were injected

using an energy spectrum that was varied in average energy until a best fit to the

experimental data was produced. Such simulations allowed all features of the wire

to be reproduced including the mysterious bump at the end of the wire, which had

not previously been understood.[56]

In this dissertation, a further step will be taken by modeling the laser-

interaction as well as the transport through the wire. These will constrain free-

parameters such as the spatial, temporal and angular distributions of the injected

electrons. This integrated approach starting from the laser-interaction will be the

most comprehensive wire-target modeling to date. Matching experimental data

will provide confidence in the accuracy of the simulations, which are then used to

explain the acceleration of electrons.
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1.6 Outline of the dissertation

Chapter 2 begins with basic plasma concepts and builds upon them to

create a broad understanding of the physics present in the laser acceleration of

relativistic electrons. The laser interaction physics is discussed, as well as, mecha-

nisms relating to the transport of these electrons through matter.

Chapter 3 is an overview of the laser systems and diagnostics presented

in the dissertation. This chapter discusses the spatial and temporal distributions

of the lasers, as well as their intensity contrast. An explanation of the Kα x-ray

production and measurement is shown. The spectrometer used to measure the

total Kα x-ray production and the spherical crystal used to record an x-ray image

are described in detail.

Chapter 4 describes direct-implicit particle-in-cell (PIC) modeling. Also

included are some of the models used in the simulations and the benchmarking

that was done to show that these models are being implemented correctly.

Chapter 5 presents the experimental setup and data taken on the ultra-

high-contrast Trident laser and on the low-contrast Titan laser. The coupling

efficiency of electrons into the wire is shown to have a large dependence on the

prepulse of the laser and we shown a dramatic increase in coupling efficiency in

the high-contrast case. The Kα x-ray images are evaluated by determining the

falloff of emission from the initial peak of the wire. This data shows that a the

falloff distance is a strong function of the intensity of the laser and that there is a

significant difference in falloff between the high and low-contrast cases.

Chapter 6 uses analytical models and rudimentary simulations to develop

an intuition of the important physics in the cone-wire targets. Simple models

that include the scattering and stopping of electrons are used to understand what

energies of electrons will produce Kα x-rays in the wire and which electrons are

responsible for the initial falloff. Analytical simulations give a model of how the

charging of the wire will occur and what other fields may be present in the system.

Chapter 7 details the use of transport simulations to understand the Kα

x-ray profiles observed and to infer electron spectra capable of producing such pro-

files. The trajectories of electrons traveling through the target and the electron
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energies producing different features of the profile are explained. A large range

of injected electron temperatures and total energies are assessed and compared to

the experimental data. This is used to estimate electron spectra for the differ-

ent experimental data points. Finally, the ad-hoc nature of electron injection is

discussed and the need for laser simulations addressed.

Chapter 8 discusses the laser-plasma-interaction (LPI) simulations used

to model the electron acceleration. The development of the plasma as well as the

resulting electron spectrum is discussed in both the high and low-contrast cases.

The electrons are resolved in space, time, angle and energy. This allows them to

be injected into transport simulations and compared to experimental data. The

initial preplasma conditions are assessed and compared to an analytical model.

Differences between large scale and small scale preplasma are discussed.

Chapter 9 concludes our work and summarizes the novel and interesting

regimes that have been explored.

1.7 Role of the Author

The author analyzed the data from all of the diagnostics presented in Chap-

ter 3. This includes the laser focal spot, HOPG spectrometer and crystal imager.

In order to obtain quantitative data on the HOPG spectrometer it was calibrated

with a single-hit CCD (SHCCD) spectrometer. The author setup and analyzed

the SHCCD and HOPG in this calibration and determined the best targets and

shot parameters over which to perform the calibration.

The experiments described in Chapter 5 were performed on the Trident

Laser at Los Alamos National Laboratory in 2010 and on the Titan Laser at

Lawrence Livermore National Laboratory in August 2009. The targets used in

these experiments were partially designed by the author. The author managed

the assembly of these targets by General Atomics and characterized the targets.

The author devised the shot plan at both facilities and decided upon the optimal

position of diagnostics within the target chamber. The author optimized the best

focus on Titan and assured that the targets were well aligned at both facilities.
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The author did the benchmarking simulations of the electron stopping and

scattering described in Chapter 4. Also, the author decided to change the Kα cross-

sections used in LSP and implemented this change as well. The author developed

the analytical models presented in Chapter 6 and ran the simple simulations pre-

sented in this chapter. The author performed the transport simulations presented

in Chapter 7. The preplasma profile used to simulate the Titan laser was run by

S. R. Chawla using the laser description provided by the author. The author ran

the laser-plasma-interaction simulations presented in Chapter 8.



2 The Physics of Laser Plasma

Interactions and Particle

Transport

2.1 General Laser-Plasma Concepts

2.1.1 Shielding and the Debye Length

Before we can discuss the interaction between lasers, particles and plasma,

we must first define the characteristics of a plasma. The defining characteristic of

a plasma is that the matter is sufficiently ionized so that the ions and electrons ex-

hibit collective effects governed by their interactions through the electro-magnetic

forces. These interactions act to screen out charges and create a quasi-neutral

state.

To understand this collective behavior we will start with the simple case of

adding a point charge of Q into a plasma at the origin. In this plasma there are

electrons and ions, these have a density nα, a velocity vα, a mass mα, and a charge

qα. Where we use the subscript α to be e for electrons and i for ions. The fluids

share a common temperature T and we assume that the plasma has an ionization

state of Z, thus the electrons and ions have a charge magnitude related to the

electron charge |qe|.
The first equation that we use is the momentum equation. This is the fluid

equation that relates the forces on the electrons and ions to their acceleration. We

have neglected the forces due to magnetic fields, as the electrons are traveling at

18
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non-relativistic speeds. Thus for electrons,

mene
dve
dt

= ∇Pe − qeneE (2.1)

and ions,

mini
dvi
dt

= ∇Pi + ZqeniE (2.2)

We are interested in finding the steady-state solution, so we set the time-

derivatives to zero. And for the plasma pressure, we assume that the plasma is

an ideal gas (i.e. Pα = nαkBT ), where the temperature is uniform and isotropic.

For the electric field, we use a potential, φ, representation, where E = −∇φ. To

simplify our derivation, we will only use one-dimension. Thus, for the electrons

0 =
∂

∂x
Pe − qeneE =

1

ne

∂ne
∂x

+
qene
kBT

∂φ

∂x
=

∂

∂x

(
log ne +

qene
kBT

φ

)
(2.3)

We integrate this equation, using the boundary conditions that at infinity

that potential, φ, goes to zero and the density goes to the initial density, Zn0. The

same can be done for the momentum equation for ions.

ne = ne0 exp

(
+
qeφ

kBT

)
(2.4)

ni = ni0 exp

(
−Zqeφ
kBT

)
(2.5)

These equations above are known as the Boltzmann relations. We can see

that when a positive charge, Q, is applied to a plasma, it pulls electrons towards

it and pushes ions away from it. This will cause the charge to be shielded by the

plasma. To determine how well this charge is shield, we use the Poisson equation

−ε0
∂2φ

∂x2
= qe(Zni − ne) +Qδ(x) (2.6)

Where δ(x) is the dirac delta function. We now substitute in the Boltzmann

relations found above. By assuming that the potential energy is small compared

to kinetic energy (i.e. qeφ/kBT � 1), we can Taylor expand the exponentials (i.e.

ex ≈ 1 + x, for small x) and keep the first order terms.

−ε0
∂2φ

∂x2
= qene0

[
exp

(
−Zqeφ
kBT

)
− exp

(
+
qeφ

kBT

)]
+Qδ(x) (2.7)

= −(1 + Z)q2
ene0

kBT
φ+Qδ(x) (2.8)
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This can be solved by an equation of the form φ(x) = A exp(−x/λ). We solve for

λ (2.8) at points away from x = 0 (i.e. when δ(x) = 0), and then solve for A by

realizing that the plasma is neutral except for the additional charge Q and thus
∫∞
−∞ φdx = Q. This gives the solution:

φ(x) = Q exp(−x/λD) (2.9)

Where λD is the Debye length given below.

λD =

√
ε0kBT

(1 + Z)q2
ene0

(2.10)

The Debye length is the length scale over which the plasma becomes neu-

tralized. Thus the requirement that we think of a plama as quasi-neutral is that

we are interested in length scales that are greater than the Debye length.

2.1.2 Plasma Frequency

We have just described the length-scale over which charge is neutralized.

The next step is to describe the time scales over which this charge neutralization

occurs. This scale is called the plasma frequency ωpe and it is the characteristic

time scale over which plasma oscillations occur. To derive this, we imagine a

plasma where the electrons have been pulled slightly away from the ions, as shown

in Figure 2.1.

++++++++ 

++++++++

++++++++ 

 

--------
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$%#

!"# !$#

Figure 2.1: Offset of the ion and electron densities used for the derivation of the

plasma frequency.



21

This offset in densities will create an electric field that can be described

by the Poisson equation. We discuss the electric field in the region where the ion

density is zero.

−ε0
∂

∂x
E = qene (2.11)

→ E = −qene
ε0

∆x (2.12)

To determine the evolution of the plasma, we use the momentum equation, where

we neglect the pressure term and substitute in the electric field from the Poisson

equation.

0 =
dve
dt

+
qe
me

E =
d2∆x

dt2
− q2

ene
meε0

∆x (2.13)

This equation, 0 = ẍ − ω2x, is an ordinary differential equation that gives

an oscillating solution with a given frequency, ω. In our case, this frequency is the

plasma frequency ωpe.

ωpe =

√
q2
en0

ε0me

(2.14)

This parameter defines the frequency at which electron oscillations occur

in the plasma. Essentially, this is the inertia of the plasma electrons in response

to an electric field. Which is important to keep in mind, because this determines

the plasma response time for given applied field. It shows us the speed at which

the plasma can smooth out perturbations in density and fields.

2.1.3 Propagation of Laser Light Through a Plasma

Now that we have shown that the plasma can oscillate when introduced to

a given perturbation, we can take a look at how the plasma is modified by the

electric field of a laser. This interaction will not only affect the plasma, but will

also change the propagation of the laser within the plasma.

We begin with a laser that is propagating through the plasma. The electric

field of the laser is given by E = E0 exp [ikz − iωt]. If we begin with the momentum

equation for electrons, where we have again neglected the electron pressure.

me
dve
dt

= −qeE (2.15)
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This is integrated to find the electron velocity, and we will substitute in the

electron current density je = −qeneve.

ve =
iqeE0

ωme

(2.16)

je = −qeneve = − iq2
eE0

ωmen0

= −iω
2
peε0E0

ω
(2.17)

Now we take the curl of Ampère’s law and make a substitution of Faraday’s

law, after making our substitution for E. Also, we recall that vector identity ∇×
(∇×B) = ∇(∇ ·B)−∇2B. Where we have ∇ ·B = 0 from Maxwell’s equations.

∇× (∇×B) = ∇×
(
µ0je + µ0ε0

∂E

∂t

)
(2.18)

−∇2B = µ0ε0∇×
(
−iω

2
peE

ω
+ iωE

)
(2.19)

=
1

c2

[
−iω

2
pe

ω
+ iω

]
(∇× E) (2.20)

Now we can make the substitutions of Farday’s Law (i.e. ∇× E = −∂B/∂t) and

we take the derivatives.

c2k2B =

[
−iω

2
pe

ω
+ iω

]
(−iωB) =

[
−ω2

pe + ω2
]
B (2.21)

This gives the dispersion relation for a laser wave in a plasma.

k2c2 = ω2 − ω2
pe (2.22)

Recall that the dispersion relation for a laser in vacuum is simply k2c2 = ω2.

So we see that the k-vector of the laser is decreased by the plasma frequency.

The k-vector determines how the laser travels in space. Thus when the k-vector

becomes imaginary, the laser can no longer propagate through the plasma. This

occurs when ωpe > ω. Physically, this means that at this point, the electrons can

oscillate at the same frequency as the laser, meaning that the electrons can move

fast enough to damp out the laser and prevent it from propagating. So by setting

ωpe = ω we can determine the density beyond which the laser cannot propagate.

This is called the critical density, ncr, it is shown below and is expressed as a

function of the laser wavelength, λL.

ncr =
ε0meω

2

q2
e

=
1.1× 1021 µm2

λ2
L

cm−3 (2.23)



23

As the laser impacts the critical density it reflects, but there is a evanescent

wave that travels a distance into the material. This can be seen from solving

the dispersion equation (2.22) at high densities so that the plasma frequency is

much higher than the laser frequency, which gives the solution k = iωpe/c, which

shows that the electric field will falloff exponentially with a characteristic length

δs = ωpe/c, the skin depth of the plasma (i.e. E(x) = E0 exp[−z/δs]). This is given

by the following equation.

δs =
c

ωpe
=

√
2.8× 1025 cm−3

ne
nm (2.24)

In this derivation, we have not included relativistic effects. However, as the

plasma begins to move at relativistic speeds the inertia of the electrons increases.

We take this into account using the relativistic electron mass (i.e. me → γme)

. Where γ is the relativistic factor γ = (1− β2)
−1/2

, where β = v/c. Since this

increases the electron inertia, they will not be able to accelerate as quickly, thus

the density required to damp out the laser will increase. Making this change we

get the relativistic plasma frequency, ωpe∗, and the relativistic critical density, ncr∗.

ωpe∗ =

√
1

γ
ωpe (2.25)

ncr∗ = γncr (2.26)

2.2 Low-Intensity Interactions

2.2.1 Field Ionization

Previously, we assumed that a plasma already existed to determine some

important plasma parameters. Now we will look how this plasma is originally

created by a laser. We start by looking at field ionization, where the laser directly

excites electrons to leave the atom.

First, we think about the photo-electric effect, where a photon must impart

enough energy to an electron to overcome the ionization energy, typically on the

order of 10 eV. In general, the lasers used in this dissertation are infra-red lasers



24

with wavelengths ∼ 1 µm, which gives a single photon energy of about 1 eV, which

is below the ionization energy. So how then does this ionization occur? The answer

has to do with intensity.

The first process to create ionization as the intenisty is increased is mulit-

photon ionization, which is shown graphically in Figure 2.2. Here electrons are

still given discrete jumps in energy, as in the photo-electric effect, but there is such

a high flux of photons that the electrons do not have time to decay back into the

ground state before they are hit by another laser photon. This type of ionization

occurs above laser intensities of 1011 W/cm2.[57]

!"

(a) Electron in its

ground state in the

atom.

!"

(b) Electron excited by

a photon from the laser.

The energy gained is not

enough to free it from

the atom.

!"

(c) Succesive kicks from

the laser photons give

the electron enough en-

ergy to escape the atom.

Figure 2.2: The mechanism of multi-photon ionization.

At higher intensities, the electric field of the laser is so strong that it can

rip electrons from their orbits. The strength of the maximum electric field of a

laser is shown below.

I =
ε0cE

2

2
(2.27)

So a laser intensity of 1016 W/cm2 can create electric fields up to 1011 V/m, which

is strong enough to overcome the coulomb potential holding the electron to the

atom. A simple model can be used to understand this mechanism. Consider the

method followed by Gibbon,[57] where we imagine the Coulomb potential, φ, of the
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atom modified by a constant external electric field, E, as shown below.

φ(x) =
−Zq2

e

x
− qeEx (2.28)

The electric field bends the potential well to bring it lower, as can be seen in

Figure 2.3. To determine the inflection point φpeak where the electric field begins

to dominate over the potential, we take the differential of the potential and set it

to zero (i.e. dφ/dx = 0). This yields the coordinate of the maximum potential,

xmax =
√
Zqe/E. This can then be used in the previous equation and as given

in[57] the electric field required to ionize an electron with binding energy Eion is:

E =
E2

ion

4Zq3
e

(2.29)

Which we can also write in terms of intensity, as expressed in Gibbon:[57]

I ≈ 4× 1019

(
Eion

eV

)4

Z−2 W/cm2 (2.30)

!"

(a) Unmodified poten-

tial.

!"

(b) Potential modified by

strong electric field.

!" !"

!#!$%"

(c) Potential modified by electric

field lower than the ionization bar-

rier.

Figure 2.3: Ionization due to modification of the coloumb potential of an atom

by an external (laser) electric field.

Thus if we know the ionization potentials for a given material then we can

determine the energy required for ionization. A paper by Carlson[58] goes in depth

looking at the ionization potentials of many materials at different ionization states.

We plot a few materials in Figure 2.4, including the intensity required to achieve
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a given ionization state. This type of ionization is called over-the-barrier (OTB)

ionization, because it requires that the electric field of the laser is strong enough to

completely overcome the coloumb potential of the atom. However, it is possible to

ionize an electron even if the laser electric field is not quite as strong. Essentially,

like in OTB, the potential is disturbed by an electric field, but not of sufficient

strength to instantly free the electron. However, there is some probability that

quantum tunneling will occur. The probability for this to occur was investigated

by Ammosov, Delone, and Kraino[59] and is known as ADK ionization.

Figure 2.4: Ionization curves for Al, Cu and Au, from.[58] The ionization intensity

is calculated from equation (2.30).

2.2.2 Ablation

So we have seen that lasers can create a plasma simply by stripping electrons

from atoms with their strong electric fields. Now we will look into how that plasma

expands. So imagine that the laser has ionized a target to an ionization state, Z,

and heated the plasma to a constant (isothermal) temperature T . As before we

solve the fluid equations. First, if we assume a quasi-steady-state solution for the

electrons (i.e. ∂ve
∂t

vanishes), then we get an electric field of neqeE = ∂P/∂x. We

solve use this electric field in the momentum equation for ions. Here we neglect
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the ion pressure (since the mass of ions is much higher than electrons) and assume

a quasi-neutral plasma (ne = Zn) expanding with velocity v. This gives the ion

momentum equation (2.31), where we have the ion sound speed Cs =
√
ZkBT/mi,

and the continuity equation for ions in (2.32).

∂v

∂t
+ v

∂v

∂x
= −Cs

1

n

∂n

∂x
(2.31)

∂n

∂t
+

∂

∂x
(nv) = 0 (2.32)

One can find that these equations are solved with a self-similar solution of the form

x/t.[60–62] This gives an equation for the expansion velocity of v = Cs + x/t and

the number density given below, where n0 is the solid density.

n = n0 exp

(
− x

Cst

)
= n0 exp

(
−x
t

√
mi

ZkBT

)
(2.33)

Thus one can see that both the temperature and ionization state (also

affected by temperature) act to increase the scale length of ablated plasma. Addi-

tionally, the more time a plasma has to expand, t, the longer the scale length can

become.

2.3 High-Intensity Interactions

2.3.1 Laser Focusing and Defocusing Mechanisms

In a plasma, the index of refraction, η, is equal to ω/k. Using the dispersion

relation (2.22) for a laser propagating in a plasma, we get the following.

η =

√
1− ω2

pe

ω2
(2.34)

If there is a gradient of the index of refraction, this will bend of the light.

As seen in Figure 2.5, light tends to bend toward higher η. This can be used to

focus or defocus the light, as in Gradient-index (Grin) optics. This effect is also

responsible for visual mirages seen over the desert or polar ice caps, due to large

gradients in temperature or density that cause changes in η. In our case, the index
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Figure 2.5: Focusing and defocusing of the laser based on changes in the index

of refraction, η.

of refraction is proportional to the plasma frequency, shown here relativistically.

ω2
pe∗ =

q2
eni
ε0me

Z

γ0

(2.35)

Here the electron density is a function of the ion density (i.e. ne = Zni). If

we assume that the time scales of interest are short compared to the ion motion,

then we see that there are gradients in η caused by gradients in Z. Here an

increase in Z that is caused by a higher intensity in the center of the laser spot

causes an increase in η which is responsible for defocusing the beam. This is called

ionization-induced defocusing.

The other gradient of interest is caused by electrons gaining inertia as they

become relativistic, as is shown in the average relativistic factor γ0. This increase

in inertia causes the plasma frequency to decrease and will cause focusing of the

laser. This mechanism is called relativistic self-focusing.

Thus there are two mechanisms that counter-act each other in the focusing

or defocusing of the laser as is illustrated in Figure 2.5. We are interested in

knowing which one of these will be dominant for a given laser intensity. To calculate

this we take the derivative of η with respect to the intensity. Here we are interested

in the sign of the derivative to see if the laser will self-focus or de-focus. Since the

laser has a higher intensity in the center of the beam, a positive change in η

will result in focusing and a negative change will cause de-focusing. To make the

derivative more simple we look at the derivative of η2, as this only changes the
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magnitude and not the sign.

d(η2)

dI
=

q2
eni
ε0me

[
−dZ
dI

1

γ
+
Z

γ2

dγ

dI

]
=

q2
eni
ε0me

Z

γ

[
−∂ log(Z)

∂I
+
∂ log(γ)

∂I

]
(2.36)

Thus we can see that by looking at the differences between the differential

logarithms of Z and γ0 with respect to the intensity, we can determine if the laser

will focus or defocus. We use the OTB calculations from Figure 2.4 to determine

the differential of Z. We use the following equation (2.37), which will be derived

later, to give the average relativistic factor of a plasma for a given laser intensity,

I and wavelength, λ.

γ0 =

√
1 +

Iλ2

1.37× 1018 W/cm2 (2.37)

Figure 2.6: Plot of differential logarithms of Z, ∂ log(Z)
∂I

, and γ0, ∂ log(γ0)
∂I

, for given

intensities.

The values of these differential logaritms are plotted in Figure 2.6. These

plots shows quite uneven behavior for the ionization state Z due to the simple

OTB model that we used assuming that only one ionization state exists at a time.

In reality this curve would be much smoother and we should be careful about using
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it for quantitative assessments. However, interesting trends can still be seen. For

instance, in Figure 2.6, we see that the ionization change is certainly dominant for

intensities below 1018 W/cm2, when the plasma can be considered non-relativistic.

However, above 1018 W/cm2 the change in γ becomes more important. Since these

calculations are dependent on the discrete atomic transitions it is difficult to deter-

mine if the γ of Z dependence will be dominant in Au. However, it seems that there

is a large difference in the Z dependence of gold versus copper or aluminum. Here

the latter two materials saturate, as they cannot ionize above a certain amount.

Thus we may expect a difference in the self-focusing between these lower atomic

number elements and gold.

Another mechanism that can occur due to these changes in η is filamen-

tation. Note that in the case where we have relativistic self-focusing, it is a non-

linear mechanism that grows on itself with positive feedback. As the higher inten-

sity causes the beam to focus, this enhanced focus causes higher intensity, which

continues to feed back on itself. When such positive feedback occurs, small pertur-

bations cause non-linear instabilities. These instabilities create filaments, where

the laser splits up into multiple portions that each self-focus independently.

2.3.2 Ponderomotive Force and Hole Boring

Over longer time scales, a mechanism called the ponderomotive force can

cause motion of the plasma density over larger time scales. This force is caused by

gradients in the intensity of the laser. Electrons are pushed harder by more intense

parts of the laser and less hard by lower intensity portions. Thus as electrons

oscillate across these intensity gradients they are pushed away from the areas of

high intensity and inevitably drag the ions along with them.

We can look at a single electron in a laser, where we describe the electric

field as E = E0 cosφ = E0 cos (kz − ωt). We assume that the spatial variation in

laser intensity is small compared to the spatial variation of its oscillations. Then

we integrate the Lorentz force equation for a single electron for the non-relativistic
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case (i.e. no magnetic field force).

∂v

∂t
= − qe

me

E0 cosφ (2.38)

→ v =
qe
meω

E0 sinφ (2.39)

→ x = − qe
meω2

E0 cosφ (2.40)

Now that we have an equation to determine the position of the particle, we intro-

duce the change of the electric field across space. We again assume that the

spatial change is slowly varying, this allows us use a linear approximation of

E(x) = E0 + x∂E0/∂x. What we want to understand is not the quick motion

of the electrons, but rather the long time-scale motion of the electrons over many

laser cycles. To understand this, we take the time averaged force on the electrons.

This force is the ponderomotive force Fp.

Here 〈y(t)〉t denotes the time average of some variable y(t). We have only

taken the second order terms into account and we recall that ∂y2/∂x = 2y∂y/∂x.

Also, we use equation (2.27) to transform the electric field into an intensity, I0.

Fp =

〈
m
∂v

∂t

〉

t

= −qe
〈
E0 sin(ωt) +

qe
mω2

E0
∂E0

∂x
sin2(ωt)

〉

t

(2.41)

= − q2
e

4mω2

∂E2
0

∂x
(2.42)

= − q2
e

2mω2

1

ε0c

∂I0

∂x
(2.43)

As described before, we see that the higher intensity regions of the laser

tend to push electrons away. Over time this can create channels of low density

plasma and is sometimes called hole-boring.

2.3.3 j×B Acceleration Mechanism

Now that we have looked at the electron motion in the non-relativistic case,

we want to look at what happens when the electrons are accelerated to relativistic

velocities. Again, we will have a plane polarized electro-magnetic wave, where the
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electric field is in the x-direction and the wave propagates in z.

Ex̂ = E0 cosφx̂ = E0 cos
(ω
c
z − ωt

)
x̂ (2.44)

Bŷ =
E0

c
cosφŷ (2.45)

Now we must solve the Lorentz force equations in the x and z directions

(as y is not acted upon by any forces, we can ignore it).

dpx
dt

= −qe (E − vzB) (2.46)

dpz
dt

= −qe (vxB) (2.47)

We first notice that the following equations are true:

−E0

ω

∂

∂t
[sin(kz − ωt)] = E0 cos(kz − ωt) = Ex (2.48)

E0

ω

∂

∂z
[sin((ω/c)z − ωt)] =

E0

c
cos(kz − ωt) = By (2.49)

Then these equations can be substituted into the force equation for x. Here we

also recall the definition of the full derivative of y(z, t) as d[y(z, t)]/dt = ∂y/∂t +

vz(∂y/∂z). Then we integrate.

dpx
dt

=
qeE0

ω

(
∂

∂t
sinφ+

∂z

∂t

∂

∂z
sinφ

)
(2.50)

=
qeE0

ω

d

dt
(sinφ) (2.51)

→ px =
qeE0

ω
sinφ+ C0x =

qeE0

ω
sinφ (2.52)

Here we end up with a constant of integration C0x. We are interested in finding

the solution where the time average of the px is zero, thus we get C0x = 0.

Next, we multiply together the Lorentz equations in x and z and rearrange.

We note that d
dt
y2 = 2y d

dt
y and that the total momentum pT is the quadrature

sum of px and pz.

−qeEx
(

1− 1

cmγ
pz

)
× dpz

dt
= −qeEx

(
1

cmγ
px

)
× dpx

dt
(2.53)

dpz
dt

=
1

cmγ

(
dp2

x

dt
+
dp2

z

dt

)
(2.54)

=
1

cmγ

dp2
T

dt
(2.55)
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The relativistic energy-momentum relationship is p2
T = E2/c2− (mc)2 = m2c2(γ2−

1) and therefore

d

dt
p2
T = m2c2 d

dt

[
γ2
]

= 2γm2c2dγ

dt
(2.56)

Substituting this into (2.55), we obtain

dpz
dt

= mc
dγ

dt
(2.57)

pz = mcγ + C0z (2.58)

As previously for px, we want to find a solution where the momentum of pz

has a time average of zero. However, this corresponds to a case where the time-

averaged kinetic energy is not zero. Instead, the time-average of γ is 〈γ〉t = γ0,

which gives C0z = −mcγ0. And thus:

pz = mc(γ − γ0) (2.59)

Now that we have the relationship of the momentum with γ, we wish to

determine how γ varies with the intensity of the laser. To do this, we again use

the energy-momentum relationship p2
T = m2c2(γ2 − 1), and then substitute in the

components of the momentum.

γ2 − 1 =
( px
mc

)2

+
( pz
mc

)2

(2.60)

=

(
qeE0

ωmc
sinφ

)2

+ (γ − γ0)2 (2.61)

We define the normalized amplitude of the laser as a0 ≡ qeE0/(ωmc) giving

a2
0 sin2 φ+ (γ − γ0)2 = γ2 − 1 (2.62)

a2
0 sin2 φ = 2γγ0 − γ2

0 − 1 (2.63)

Now we take the time average and recall that
〈
sin2 φ

〉
t

= 1/2 and 〈γ〉t = γ0. After

doing this time averaging, we get an equation that relates the averaged relativistic

gamma to the normalized intensity of the laser.

γ0 =

√
1 +

a2
0

2
(2.64)
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Since the kinetic energy, Ek = (γ−1)mc2. We can use this to get the time-averaged

kinetic energy.

Ek = mc2

[√
1 +

a2
0

2
− 1

]
= 0.511 MeV

[√
1 +

Iλ2

1.37× 1018 W/cm2 − 1

]
(2.65)

This is the well-known ponderomotive potential of the laser. As we have just

shown, this is the average kinetic energy that an electron will have in a linearly

polarized electro-magnetic wave.

We can again arrange the relativistic energy-momentum relationship to de-

termine the motion of the electron in z. We will use the trigonometric relationship

of 2 sin2 φ = 1− cos 2φ.

γ2 − 1 =
( px
mc

)2

+
( pz
mc

)2

(2.66)

= a2
0 sin2 φ+

( pz
mc

)2

=
( pz
mc

)2

+ 2
pz
mc

γ0 + γ0 − 1 (2.67)

pz
mc

=
1

2γ0

[
−a

2
0

2
cos 2φ+

a0

2
+ 1− γ2

0

]
(2.68)

= − a2
0

4γ0

cos 2φ (2.69)

So now we can write out the momentum equations in both directions.

pz
mc

= − a2
0

4γ0

cos 2φ (2.70)

px
mc

= a0 sinφ (2.71)

We see that in this case the time-averaged momentum is zero in both di-

rections. Thus when oscillating in this laser field, the electron will gain any energy

over time. However, because the electrons are oscillating in the z direction, they

can be accelerated over any gradients in z. For instance, if the laser is near to the

critical density, then the laser will accelerate electron up to the critical density.

But then, once these electrons are pushed passed critical density, the laser cannot

propagate and the electrons are not pulled back by the laser, thus they are pushed

into the materials.

This acceleration mechanism is called j×B heating, because electrons are

able to gain momentum in the laser propagation direction due to their relativistic
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vz ∝
∫

Fzdt

vx ∝
∫

Fxdt

Fx ∝ Ex

Fz ∝ −vxBy

ωt

Figure 2.7: Motion of electrons and forces in a relativstic laser field.

v×B motion. This story can be shown through the explanatory graphic in Figure

2.7. First the electron is pushed by the electric field, it gains velocity in the x-

direction as it is pushed by this field. Then, as it increases in x-velocity it is

acted upon by a force in z from the cross-product of vx and By which causes an

acceleration in z. As both vx and By are sinusoidally varying terms their product

has double the frequency of the original wave (i.e. 2ω). Thus we note that the

acceleration of electrons due to j×B heating occurs at twice the laser frequency.

Another important part of this acceleration mechanism is the angle at which

the electrons are accelerated. This can be determined by dividing determining the

ratio of the momentum in the forward and transverse directions. We can first find

p2
x = m2c2(2γγ0 − γ2

0 − 1) from (2.59) and the momentum-energy relation. Thus

the ejection angle is

tan θ =
px
pz

=

√
2γγ0 − γ2

0 − 1

(γ − γ0)2
(2.72)
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For an electron starting at rest γ0 = 1, which gives the following:

tan θ =

√
2

γ − 1
(2.73)

This equation shows that higher energy electrons are ejected at smaller

angles from the laser-direction, as compared to lower energy electrons.

2.4 Electron Transport Physics

Now that we have discussed how relativistic electrons can be accelerated

by lasers due the j × B force, we look into what happens to them after they are

accelerated. In our discussion of the laser and plasma interactions, we could expect

that the materials would behave like plasmas. However, in the case of electron

transport, the electrons are often traveling through materials at solid density that

do not necessarily behave like a plasma. Thus we must take into account effects

that occur in cooler, denser matter, such as electron-ion collisions, as well as the

collective effects that occur in plasma.

2.4.1 Collisional Effects and Plasma Resistivity

Spitzer Resistivity

We begin by looking at collisions between electrons and ions. Consider

the case of an electron at an impact distance r from an ion of charge Zqe with a

momentum p = mev. The force, F at the closest approach will be

F = m
dv

dt
≈ − Zq2

e

4πε0r2
(2.74)

For this estimate we assume that the force is constant and occurs only over

the time t = r/v, which gives a change in momentum of ∆v = F (r/mv). So we now

have an understanding for how the electron interacts after one collision. However,

we are interested in how the electrons move after multiple collisions with ions, and

we’d like to know the time scale over which this occurs. Naively one might think
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Figure 2.8: Electron being scattered off multiple ions resulting in a random walk

like movement.

that this could be found by taking the time derivative of ∆p. However, the fact

that the electron can scatter in multiple directions and that each scattering event

is unique, means that this is a random-walk like interactions. Thus we take the

time derivative of the the square of the change in momentum (i.e. (∆p)2). To do

this we multiple this value by the velocity of the electrons v the density of the

ions ni and then we must integrate over all impact parameters π
∫
rdr to find the

average momentum change.

d

dt
(∆p)2 = ni

∫ rmax

rmin

r

(
− Zq2

e

4πε0rv

)2

dr =
Z2q4

eni
16πε20v

2

∫ rmax

rmin

dr

r
=

Z2q4
eni

16πε20v
2

ln Λ

(2.75)

As can be seen from above, ln Λ is the ratio of the maximum to the min-

imum impact parameters. The maximum impact parameter is the Debye length,

because this is the maximum range of fields in a plasma (as shown previously).

The minimum impact parameter is set by the larger of the de Broglie wavelength

and the classical distance of closest approach. To determine the time at which

the random-walk momentum is equivalent to the initial momentum, we divide the

above equation by p = mv and take the derivative of both sides. However, we are

really interested in the electron-ion collision frequency νei, which is the inverse of

this time.

νei =
Z2q4

eni
16πε20mv

3
ln Λ (2.76)

We use the Drude model, which says that the resistivity η of a material

is proportional to the inverse of the electron inertia times the collision frequency.

Also, to make this applicable to an equilibrium plasma, we can take the use the
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average velocity of a Maxwellian distribution vavg =
√
kBTe/m. This gives the

Spitzer Resistivity of a plasma.[63]

η =
me

neq2
e

νei =
Zq2

em
1/2
e ln Λ

16πε20

1

(kBTe)3/2
(2.77)

LMD Resistivity

As before, the Spitzer model offers a plasma physics based interpretation

of scattering. One can see that, as the temperature of the plasma goes to zero,

the resistivity becomes infinite. If this were true, then there would be no conduc-

tors at room temperature, which is certainly not the case. Thus to understand

the resistive behavior at lower energies, we consider the Lee and More model[64]

with Desjarlais corrections,[65] known as LMD. This model includes the material

behavior at temperatures where inter-atomic forces are more relevant than plasma

parameters. However, the model still reproduces the (kBTe)
−3/2 behavior of Spitzer

as the material temperature increases and becomes more plasma like. The Figure

2.9 shows plots of the resistivity of three different materials across a broad range

of temperatures, which are of interest to this work.

Figure 2.9: Resistivity curves for Al, Cu and Au determined using the LMD

resistivity model.
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2.4.2 Alfvén Current Limit

Now that we have discussed the resistivity created by rather low energy

energy electrons transporting through plasma, we move to an extremely different

case: a high-energy, large current electron beam propagating through vacuum. We

use this to calculate the Alfvén current limit. This is the largest net current that

can physically be sustained. Here we start by supposing a current I0 propagating

through vacuum with a radial extent of R. Driving a current generates a magnetic

field from Ampère’s law. Here we suppose a steady state solution and use the

Biot-Savart law to determine the strength of the magnetic field B at the edge of

the beam.

B =
µ0I0

2πR
(2.78)

Now let us think of a single electron in that beam at the radius R from

the center. This electron will be driven in a cyclotron motion. The radius of this

motion is given by the Larmor radius RL = p/(qeB), where p is the electron’s

momentum. Now the case for this electron to be completely turned around by the

magnetic field is when the Larmor radius is smaller than twice the radius of the

starting point of the electron (i.e. R < 2RL). So if we plus this into the above

equation we can solve for the current necessary to perform this reversal of the

electron.

IAlfvén =
4π

µ0qe
p =

4πmec

µ0qe
γβ (2.79)

This simple argument is actually the derivation for the Alfvén current

limit,[23] though it can be done in much more detail.[66, 67] This is the current

at which the self-generated magnetic field of the current causes the beam to pinch

and reverse on itself. For an electron with 1 MeV of kinetic energy, this gives a

maximum current of less than 50 kA, even 10 MeV electrons are Alfvén-limited

at 350 kA. However, mega-Amp currents have been observed experimentally in

short-pulse laser experiments and are, indeed, necessary for fast ignition. So how

are these currents possible? The answer is that the magnetic field growth is de-

pendent on the net current, not simply the forward streaming current. Thus, the
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fact that high currents have been observed hints at a neutralizing current that is

drawn from the background plasma and capable neutralizing the forward current.

2.4.3 Return Current Response Time

From the case of a fast current propagating in vacuum, we move to the

case of a current propagating in a plasma. This forward (or fast) current jf , will

draw a background current jb due to the electric field that the current creates as

it propagates through the plasma. We look at the time necessary to draw this

background current and thus to prevent the magnetic field from collapsing the

forward current.

We begin with the momentum equation for the background electrons. As

the background electrons should stay non-relativistic, we have neglected the mag-

netic forces. However, we have added an additional force from the collisions of the

background current within the plasma. This is modeled by the resistivity η. As

we discussed previously, the resistivity is proportional to the electron-ion collision

frequency of the plasma νei = ηn0q
2
e/me. We can rearrange the equation to get a

solution for the electric field, E.

me

q2
en0

djb
dt

= −E − ηjb (2.80)

→ E = − me

q2
en0

djb
dt
− ηjb (2.81)

This solution for the electric field can now be inserted into Ampère’s law. In this

simple estimate we neglect the magnetic field (i.e. ∇×B → 0).

0 = −ε0
dE

dt
+ jb + jf (2.82)

=
meε0
q2
en0

d2jb
dt2

+ ηε0
djb
dt

+ jb + jf (2.83)

=
d2jb
dt2

+ νei
djb
dt

+ ω2
pejb + ω2

pejf (2.84)

Notice that this equation has the form of a driven-damped harmonic oscilla-

tor. This gives a solution of the form jb = A0 exp(ωbgt)+B0, where −ωbg is the com-

plex decay frequency of the oscillator. By inserting this solution into the equation
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using the boundary conditions of the problem, this gives jb = −jf [1− exp(−ωbgt)]
as the solution. In our case, we are interested in the decay time, ωbg.

ωbg =
νei −

√
ν2
ei − 4ω2

pe

2
=
νei
2

[
1−

√
1− 4

ω2
pe

ν2
ei

]
(2.85)

As this is a harmonic oscillation, there are three different regions of interest

that can be defined by the so-called damping ratio, ζ = νei/(2ωpe), which deter-

mines the type of response that will dominate the solution. When ζ < 1 (i.e.

ωpe > νei) this is the underdamped solution. In this case, the solution will be have

a complex frequency, indicating the there are sinusoidal fluctuations. When the

electron-ion collision frequency is negligible compared to the plasma frequency, the

frequency of these oscillations will give an imaginary frequency of ωbg = iωpe, which

corresponds to plasma waves being driving by the fast current. These oscillations

should be able to neutralize the fast current it they are faster than the character-

istic time of this current. It is intuitive to the think of the plasma frequency as

the inertia of the electrons in the plasma, because it is essentially the acceleration

time of these electrons.

The next important region of interest is the critical damping, where ζ = 1.

This is the maximum damping time, which the decay time is ωbg = νei/2 and

occurs when the plasma frequency is half of the electron-ion collision frequency.

As the damping ratio increases, ζ > 1, the plasma becomes over-damped.

This means that the collisional time is now so fast that the plasma is damped

before oscillations can occur. Thus, at this point, the plasma cannot support a

fast current that is on the order of the plasma frequency timescale. Interestingly,

as the plasma increases in density, the plasma response time equilbrates to a given

value. This value can be found through a Taylor expansion of the determinant

(i.e.
√

1 + x ≈ 1 + x/2). This gives a value of ωbg = ω2
pe/νei = ε0/η. Thus, at

high densities, we see that the response time is dependent on the resistivity of the

plasma alone.
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2.4.4 Current Neutrality Conditions

So now we have an understanding of the timescale of the drawing of the

background return current. Now what do we compare this to? One might first

think that it would be appropriate to compare the timescales to cyclotron fre-

quency, because this is the amount of time that it would take an electron to turn

around in a given magnetic field. However, this magnetic field must already be

developed, which means that the return current was not drawn at a quick enough

pace to neutralize the fast current.
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Figure 2.10: Plot of timescales of interest in return current generation. The laser

frequency, ωLaser, is shown for a 1 µm laser. The plasma frequency ωpe is plotted.

Return current decay time is plotted for two cases 1) for high value of resistivity

10−5 Ω m and 2) for metals at room temperature 10−8 Ω m.

Instead, a better number for the fast current timescale, is the laser frequency

ωL. Because, as we can recall from the previous section on j×B acceleration, the

fast electrons are injected at a rate of twice the laser frequency. Thus this is the

best comparative timescale. Electrons are injected near the critical density and

this density corresponds to the frequency of the laser, thus from a laser accelera-
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tion perspective, we expect the plasma frequency to compensate the fast electron

current in almost every case.

Figure 2.10 shows the frequency timescales of a interest to the return current

generation. The plasma frequency, ωpe is plotted to show the timescale at which

the plasma waves can move to shield the fast current, as well as twice the laser

frequency to show the fast current timescales. The electron-ion collision frequency

νei is shown for two cases. The case of resistivity of 10−5 Ω m is a high estimate

for the peak of resistivity for a plasma and the case of 10−8 Ω m is consistent with

metals at room temperature. One can see that even for quite high resistivities (i.e.

10−5 Ω m) that the effect of collisions will most likely not play much of a role in

inhibiting the response time of the return current.

2.4.5 Collisional Effects on Fast Particles

Stopping Power

We have used the Spitzer[63] and LMD[64, 65] models to understand the colli-

sions that take place non-relativistic temperatures. However, when electrons begin

to travel at faster speeds, they are able to drive plasma oscillations and, also, must

be treated relativistically. Work done by Atzeni[33] and others,[68] has given a model

that describes the collisions of electrons in a plasma.

This model separates collisions into two components. The energy loss, or

stopping power dE
dx

and the scattering dσ2

dx
. In this model, the stopping power

changes the kinetic energy of the electrons and the scattering changes the directions

of the particles’ momentum.

The stopping power is given by the following equation, where ρ is the mass

density of the material, β is the normalized speed of the electron, mi is the mass

of the ions, ~ is the reduced Plank constant and γ is the relativistic factor.

dE
dx

∣∣∣∣∣
coll

= −ρ 1

β2

4πq4
eZ

mimec2

[
ln
mec

2

~ωpe
+

9

16
− 1

2
ln 2 + f(γ)

]
(2.86)

where

f(γ) = ln
(
β
√
γ − 1

)
−

1
8

+ ln 2

γ
+

1
16

+ 1
2

ln 2

γ2
(2.87)
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Figure 2.11: Energy loss, dE
dx

, of electrons through solid density materials.

Unlike the Spitzer formula, we will only use this stopping power for indi-

vidual electrons and not take an integration over a temperature. In both formulas

there is a similar trend with both collisions models in that they both show a de-

crease in stopping with increased velocity. However, when electrons increase to a

certain velocity then the stopping from collisions alone is no longer the main con-

tribution to the stopping power. Instead, radiative stopping becomes the dominant

contribution to the stopping power. The stopping powers for different materials at

solid density is shown in Figure 2.11.

Scattering

The scattering as described in the Atzeni model[33] gives the average square

deflection per unit path length. As the electrons undergo multiple scattering events

they become gaussian distributed with an average square deviation, 〈Θ2〉, as ex-

pected from the central limit theorem. The length scale for the increase in the

square deviation is given below. Here ln Λ = 4πλD
λdB

, Zi atomic number and Z is the

ionization state of the atom.

d〈Θ2〉
dx

= 2
q4
e

4πε20

1

p2v2
[Lei + Lee] (2.88)



45

Lei = Zini × Zi
(

ln Λ− 1− β2

2

)
(2.89)

Lee = Zni ×
(

ln Λ− ln[2(γ + 3)] + 1

2

)
(2.90)

The scattering terms for electrons off of ions Lei and off of electrons Lee

are separated. As one can see that ions scattering terms scales with Z2
i and the

electron term like Z. As we will be dealing with mostly high Zi materials, we see

that scattering due to electrons is very small compared to the ions.

Figure 2.12: Average square deflection and Isotropic Scattering Distance for

electrons in different materials at solid densities

Another intersting way to look at scattering is to determine the amount of

distance that the electrons will have to cover before they are scattered isotropically

into a sphere (i.e. 4π) if they began without any divergence. We call this the

isotropic scattering distance. This is plotted in Figure 2.12 along with the average

square deflection.

Notice that the isotropic scattering distance is only around 1-10 µm for

electrons of 0.1 to 1 MeV in Cu and Au. Often the measurements that are of

interest in our experiments are on the order of 100 to 1000 µm. Since electrons

may be scattered significantly at these distances, the amount of initial divergence

of the electrons may be of only minimal importance.



3 Laser Systems and Diagnostics

3.1 Laser System Descriptions

The two lasers used for the experiments in this dissertation are the Titan

Laser at the Lawrence Livermore National Laboratory and the Trident Laser at the

Los Alamos National Laboratory. Both lasers use the optical parametric chirped

pulse amplification (OPCPA) technique and both are Nd:glass lasers with a 1.054

µm wavelength. This allows them to achieve short laser pulses on the order to 500

fs and maximum energies up to around 100 J. This gives to powers in hundreds of

TW and achieves peak intensities of up to 1020 W/cm2.

The CPA technique was developed by Strickland and Mourou[1] in order to

dramatically increase the maximum power acheiveable by lasers. The maximum

power of a laser is restricted by the amount of laser intensity that the amplification

optics can withstand without damage. One way to reduce the intensity on the am-

plifiers is to increase the diameters of these optics. However, this increases the cost

of the amplifiers and manufacturing difficulties make this unfeasible. Another way

to reduce the intensity is to increase the length of the pulse as it passes through

the amplifiers; this is the method used in the CPA technique.This technique uses

gratings (or other dispersive optics) to separate the laser by frequency. These dif-

ferent frequencies then travel different path lengths to spread out the pulse in time.

This process is called chirping, and means that higher wavelenths proceed earlier in

time that lower wavelengths (or vice versa). Since the pulse is longer its intensity

is reduced while passing through the amplifiers and more energy can be added to

the beam without exceeding the damage threshold. Then, after amplification, the

pulse is recompressed by another grating which inverts the chirp and returns the

46
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laser to its original pulse length. Now the high energy beam is also high power

and can achieve high intensities on target.
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Figure 3.1: Illustration of the CPA amplification technique. The short unampli-

fied pulse, A, enters a stretcher (1) where the pulse is chirped by wavelength to

a longer pulse length, B. This pulse enters the amplification train (2) and gains

energy. This chirped, amplified pulse, C, then enters a compressor (3), which

produces the amplified, high-power, short laser pulse, D.

3.1.1 Laser Power

In terms of power delivered, the Trident and Titan laser systems are com-

parable, as shown in Table 3.1. This table shows the minimum and maximum laser

energies used in this work. The power was varied on both laser systems to sample

an overlapping intensity range.

3.1.2 Laser Focus

To understand how well the laser was focused at the target, a camera was

placed at the laser focus and a low energy laser beam was captured by the camera.
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Table 3.1: Range of laser characteristics used in our experiments on the Tri-

dent and Titan laser systems. Also shown is the expected peak Tpond from the

ponderomotive potential in (2.65), where the laser wavelength of both lasers is

1.054 µm.

Laser Range Energy τFWHM Peak Power Peak Intensity Peak Tpond

[J] [fs] [TW] [W/cm2] [MeV]

Trident Min 24 560 40 1.8×1019 1.5

Max 75 570 122 5.3×1019 2.9

Titan Min 16 650 24 1.0×1019 1.0

Max 161 650 243 1.0×1020 4.2

The camera had a high dynamic-range and was thus able to identify the peak of

the laser in space as well as the lower intensity wings. Images of the laser profiles

for the Trident and Titan beams are shown in Figure 3.2.

The diffraction limit of a laser is the smallest focal spot that is theoretically

achievable for given laser setup. This is dependent only on the wavelength and

the f-number of the laser. Both the Trident and Titan lasers have the same laser

wavelength of λL = 1.054 µm. The f-number of parabola used on the Trident was

f/8 and on Titan was f/3. Thus, all other things begin equal, one would expect

that the Titan laser would focus to a smaller spot than Trident. However, as we

will see shortly, this was not the case, due to beam aberrations on Titan that

degraded the focal spot. On the other hand, we notice that the Trident beam is

much closer to diffraction limited as can be seen from the Airy rings in the focal

spot image of Figure 3.2. A lineout of the Trident focal spot is compared with its

idea diffraction limited spot in Figure 3.3.

The peak of the diffraction limited spot, I0,diff, is given by the following

equation, dependent on the laser wavelength λL, the peak power P0 and the f-

number fL of the focusing optic.

I0,diff =
π

4

P0

λ2
Lf

2
L

(3.1)
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(a) Trident laser focal spot image.
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(b) Titan laser focal spot image.

Figure 3.2: Images of the two laser focal spots taken with high resolution cameras.

The colorscale is linear with the maximum value normalized to the peak of the

beams.

Also, the FWHM of the beam can be given by the approximation:

FWHM ≈ 0.989λLfL (3.2)

Table 3.2: Comparison of the Trident and Titan focal spots versus diffraction

limited beams.

Observed Diffraction Obs : Diff

Trident (f=8) I0
P0

[1/cm2] 4.12×105 1.10×106 2.68 : 1

FWHM [µm ] 11.96 8.34 1 : 1.43

Titan (f=3) I0
P0

[1/cm2] 5.11×105 7.86×106 15.36 : 1

FWHM [µm ] 11.96 3.13 1 : 3.82

To determine the quality of a given laser system, this diffraction limited

peak intensity I0,diff is compared to the actual peak intensity of the laser, I0. This

ratio is called the Strehl ratio = I0/I0,diff. The Strehl ratio is 0.33 on the Trident

laser and 0.065 on the Titan laser; thus the Trident laser focuses 5 times more

effectively than the Titan laser. However, the Titan laser has a lower f-number
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Figure 3.3: Plots of the diffraction limited spots (an Airy function) and the

experimentally observed Trident setup.

than Trident, which cancels out the effect of this aberration and makes the focal

spots of the two beams similar. This can be seen in similar focal sport of the

two lasers shown in Figure 3.4, as well as the laser intensity distribution shown in

Figure 3.5.

Table 3.3: Comparison of the Trident and Titan focal spots with respect to the

energy contained in a region of the beam.

Energy Fraction Trident Titan

Diameter Peak Fraction Diameter Peak Fraction

[ µm ] [ µm ]

0% NA 1.00 NA 1.00

20% 8.2 0.80 7.3 0.81

50% 15.3 0.38 14.6 0.26

To get an understanding of how the intensity is distributed within the spot,

an intensity distribution was taken. This is done by taking a histogram of the laser

focal spot and determining how much energy (or power) has a given intensity. This

is plotted for the minimum and maximum cases for Titan and Trident in Figure

3.5. In this figure, the intensity distribution for a triple gaussian fit to Trident has

also been plotted.
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(a) Trident lineouts. (b) Titan lineouts.

Figure 3.4: Lineouts of the Trident and Titan Intensity profiles in the vertical

and horizontal directions in the solid lines. These are compared to a triple gaussian

that was used in simulations.

Table 3.4: Triple gaussian function that fits the Trident focal spot and is also

quite similar to the average of Titan. The peak intensity is the intensity when fit

to the maximum energy Trident shot. The peak fraction is the normalized fraction

of the peak. The FWHM is the full-width-at-half-maximum of the gaussian and the

energy fraction is the fraction of energy the particular gaussian function contains

with respect to the total.

First Second Third

Peak Intensity [W/cm2] 5.10× 1019 6.55× 1017 8.14× 1016

Peak Fraction 98.58% 1.266% 0.1573%

FWHM [ µm ] 11.96 58.63 108.7

Energy Fraction 69.4% 21.4% 9.2%

A superposition of three 2-dimensional gaussian functions was fit to the laser

profile of the Trident laser, as is shown in Figure 3.4. This function characterized

the laser pulse and was useful in simulations of the laser. As noted previously, the

Trident and Titan have somewhat similar laser profiles once they are averaged.
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(a) Trident laser intensity profile for a 5× 1019

W/cm2 (in squares) and a 2× 1019 W/cm2 (in

triangles) peak intensity laser pulse. The dot-

ted line corresponds to the Gaussian fit for the

highest intensity case.

(b) Titan laser intensity profile for a 1 × 1020

W/cm2 (in circles) and a 1 × 1019 W/cm2 (in

diamonds) peak intensity laser pulse. The dot-

ted line corresponds to the Gaussian fit for the

highest intensity case.

Figure 3.5: Intensity Distributions of the Titan and Trident lasers for the mini-

mum and maximum powers as listed in Table 3.1. Shown with a dotted line is the

triple gaussian fit to the maximum intenisty.

The intensity distribution of this triple gaussian function is shown in Figure 3.5

and the parameters of this function is shown in Table 3.4.

3.1.3 Prepulse

While the two lasers are similar, they differ in the amount of laser prepulse.

Prepulse the energy in the laser that comes before the main pulse of the laser.

Because of the extremely high peak laser intensities, even a prepulse that is one

hundred million times less intense (10−8), like Titan, than the peak of the main

pulse can have intensities up to 1012 W/cm2, which is high enough to ionize and

ablate material from the target. Since, in general, prepulses come nanoseconds

before the main pulse, there is a significant amount of time for the initial target

to become heated and to expand. This expanding plasma prior to the main pulse

is called the preplasma. The preplasma moves the critical density of the laser
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further from the initial solid target. Also, importantly, it creates a large amount

of underdense (below critical density) plasma, which may cause non-linear effects

such as self-focusing of the laser to occur. The Titan laser has from 1 mJ (at lowest

peak intensity) up to 18 mJ (at highest peak intensity) of prepulse energy that

comes approximately 2 ns before the peak of the pulse. This creates preplasma

that expands hundreds of microns in front of the initial target surface.

Figure 3.6: Prepulse levels of the Trident (left) and Titan (right) Laser sys-

tems.The Trident level of prepulse, plotted on a log-scale) replotted from Ref. [18,

is much lower than on Titan, plotted on a linear scale.

The Trident laser has a significantly reduced prepulse level, while still hav-

ing a high laser power.[69] In fact, the amount of energy coming nanoseconds before

the main pulse is less than 1 µJ. Therefore the main contribution to preplasma

creation is not from laser energy coming nanoseconds before the main pulse. In-

stead, it comes from the finite rise time of the laser that comes around 0.1 ns

before the main pulse, as shown in Figure 3.6. In this relatively short amount of

time, the Trident laser may deliver around 5 mJ of energy, which is similar to the

energy in Titan’s prepulse. However, as this material has much less time to expand

away from the target, there will be much less preplasma. As shown previosly, and

repeated below, the scale length of the ablated plasma is dependent on both the
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plasma temperature and the expansion time.

Expansion Length ∝ Cst = t

√
ZkBT

mi

(3.3)

This difference in preplasma scale length between Trident and Titan is

the primary reason for differences in the high-intensity laser-matter interactions

between the two lasers.

3.2 Overview of Kα Radiation

The main technique used to diagnose the electron spectra in this dissertation

is the measurement of Kα radiation emitted by copper. These x-rays give a way

to measure the electrons passing through a material. They are generated when an

electron from the L-shell falls into the K-shell and the excess energy is released as

a photon, called a Kα photon. This process is shown in Figure 3.7. In copper, this

photon has an energy around 8 keV.
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Figure 3.7: Illustration of the generation of Kα radiation. Ionizing radiation (e.g.

a fast electron) ionizes a k-shell electron, which causes the k-shell vacancy. When

an electron from the L-shell drops to fill this vacancy it releases a photon with an

energy equivalent to the difference in energy of the two states. This is called a Kα

photon.



55

The Kα generation process occurs when the k-shell is vacated. The shell

can be vacated when ionizing radiation impacts the k-shell electron and imparts

energy to overcome the binding energy. In our experiments, the main process

that ionizes the atoms are the collisions with fast electrons moving through the

material. Figure 3.8 shows the cross-section for k-shell ionization by electrons in

copper. Notice that the cross-section is relatively flat for energies between 0.5 to

10 MeV. This means that the Kα radiation can be thought of a way to count

electrons that pass through a plane of the material.

Figure 3.8: Cross-section for k-shell ionization in copper due to fast electrons.

From equations in Refs.[70, 71]

3.3 Crystal Spectrometer for Kα Measurement

3.3.1 Bragg Reflection and Spectrometer Information

To characterize the total energy carried by electrons we measured the total

Kα radiation generated from the target using an absolutely calibrated spectrome-

ter. This spectrometer uses Bragg reflection from a crystalline material to separate

the different wavelengths. Bragg reflection occurs as x-rays passing through a ma-

terial cause the atoms within the material to oscillate. If the atoms are aligned

in layers then the oscillations can be in phase. This phase matching criterion is
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met when photons of a given wavelength are incident at the appropriate angle,

known as the Bragg angle. Then the reradiation of the atoms will align coherently

and produce a specular reflection. This can be understood through the graphic

in Figure 3.9. Here the wave B traverses an additional length of 2d sin θ. If this

distance is equal to an integer multiple n of the wavelength λ, then the waves will

be in phase. This leads to the Bragg relation of nλ = 2d sin θ. Thus different

x-ray wavelengths will have different reflection angles and a crystal can be used as

a spectrometer.
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Figure 3.9: Illustration of Bragg reflection in a crystal. Incoming light rays A and

B are reflected if they stay in phase. They rays will stay in phase if they traverse

the same distance plus an integer, n, number of wavelenghts λ. If this condition

is not met the light wave will not be in phase and thus not propagate.

Cu Kα (8038 eV=13.3°, w/ n=1) 

Ag Kα (22.1 keV=9.63°, w/ n=2) 

Figure 3.10: Dimensions of the HOPG spectrometer. The shaded green line on

top corresponds to a portion of the spectrometer use to diagnose Ag Kα radiation,

which was not used in this work. The bottom portion in shaded gray corresponds

to the Cu Kα that was used. Image courtesy of K. Akli
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In our experiments, we use highly oriented pyrolytic graphite (HOPG)

which consists of many crystaline planes that are oriented within some deviation

from normal. By allowing some deviation from a perfect crystal the reflectivity is

increased since more x-rays match the Bragg condition at a given point. However,

for this same reason, the resolution of the spectrometer is degraded. For measuring

the absolute value of Kα radiation, the resolution of the HOPG is acceptable and

the high reflectity gives high signal-to-noise ratios. The dimensions of the HOPG

spectrometer used in our experiments is shown in Figure 3.10.
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Figure 3.11: (Left) Raw pseudo-color image of an imaging plate after exposure

within the HOPG spectrometer. (Right) Transversely averaged lineout of the

HOPG imaging plate, before and after subtraction of the continuum background

radiation.

A sample image of raw data from the HOPG spectrometer is shown in

Figure 3.11a. To obtain a spectrum from this data a large box (in the yellow) was

averaged transversely (horizontally) and then a lineout was taken in the energy

direction (vertical) axis. This lineout is shown in Figure 3.11a. The Kα line, as

well as a Kβ line are seen in the peaks. Notice the low level of noise in this lineout,

this is due to the detailed construction of the diagnostic and the large amount of
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shielding used. After subtracting the continuum background, we integrate under

the Kα peak to get the total Kα yield.

3.3.2 Spectrometer Calibration with SHCCD
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Figure 3.12: Chamber diagram of the cross-calibration setup for the SHCCD,

not to scale.

To calibrate the spectrometer, shots were taken with the Titan laser inci-

dent on a Al/Cu multi-layered foil, as shown in Figure 3.12. The Kα emission was

measured with the HOPG spectrometer and cross-calibrated against a previously

calibrated[72] Single Hit CCD (SHCCD). The SHCCD records the energies of in-

dividual photons incident on a single pixel of the CCD. By taking a histogram

of these photons a spectrum is recorded and the total number of Kα photons is

recorded. The amount of charge gathered by each pixel is linearly related to the

energy of the x-ray photon incident on that pixel. We cannot differentiate between

a single photon and multiple photons hitting a single pixel, thus it is important

to operate in the so-called single hit regime, where the fluence of photons is low

compared to the pixel size, so that multiple photons will not hit a single pixel.

A sample of a portion of the CCD is shown in Figure 3.13, which shows

that the photon density is low compared to the size of the CCD. A single event

algorithm was used to subtract pixels that may have been caused by overlapping

photons. The energy resolution of the SHCCD is of much lower quality than the

HOPG. In fact, the SHCCD cannot distinguish between the desired Kα emission
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Figure 3.13: (left) Raw image from SHCCD. The black pixels have energies

consistent with Kα photons, while white pixels contain less energy and red pixels

contain more energy than consistent with Kα. (right) Spectra of energies contained

on the SHCCD before the single event algorithm (to remove double hits) in blue

and after in red.

and a thermally emitted Heα line from Cu. The Heα line is excited when the laser

is incident upon the Cu, therefore the target was coated with 5 µm of Al on the

laser interaction side.

The cross-calibration done between the SHCCD and the HOPG spectrom-

eters is shown in Figure 3.14. Since the SHCCD has been absolutely calibrated by

Maddox et al.,[72] the HOPG can now be used to obtain quantitative data.

3.4 Kα Spherical Imager

A spherical imager was used to obtain an image of the Kα radiation emitted

by the target. This crystal was quartz with a 50 cm radius of curvature a 0.3082

nm 2d-lattice spacing and 2131 Miller Indices. The imager uses Bragg reflection

off a spherical mirror to create a focused x-ray image.

The focused light was captured by one of two collection instruments. The

collector used on Titan was an x-ray sensitive charge-coupled device (CCD), PI-

SX1300. This device counts the number of electrons freed by an x-ray photon
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Figure 3.14: Calibration of the HOPG spectrometer against the SHCCD spec-

trometer. The dark orange dots are the experimental values with error bars. The

dotted black line shows the calibration value. The shaded gray region corresponds

to an error bar of 12%, which is the value found from summation of the expected

error bars from the calibration. The shaded orange region corresponds to an error

of 27%, which corresponds to the error expected from the deviation of these points

from the average.

traveling through Si by running the freed electrons through a circuit. CCD detec-

tors are extremely useful due to their high signal-to-noise ratio (SNR) and good

resolution. However, due to their susceptibility to electromagnetic interference

they cannot be used in all situations. In fact, a more robust technique was used on

Trident. The collectors used on Trident were FujiFilm Imaging Plates (IP). The

IPs contain a phosphor layer that is sensitive to ionizing radiation. When energetic

particles (e.g. electrons, photons, ions) are incident on this phosphor they excite

electrons. Some of these electrons do not fall back immediately into their ground

state and instead are trapped within phosphorescent material. These electrons

can be freed from this trapped state by illumination with a red laser (λ ∼ 600

nm). Upon decay back into the ground state these electrons emit another photon

(λ ∼ 400 nm).[73] By shining a red laser on the exposed IP and recording the

reemitted light, an image of the absorbed radiation can be reconstructed. This is
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done within a FujiFilm scanner. There is some chance for the electrons trapped

in the phosphor to spontaneously decay to the ground state. For this reason, it is

important to scan with the laser at a fixed period after each exposure. Addition-

ally, since 600 nm light is present in natural white light, it is important to keep

the IPs light-tight before scanning to avoid pre-luminescence. Unfortunately, IPs

have a lower signal-to-noise ratio (SNR) than CCDs, but their robustness to EM

interference make them valuable in many situations.

Due to differences in detectors as well as different imager geometries the

resolution of the image setups was different at each laser facility. On Trident the

resolution was characterized by a 60 µm FWHM gaussian smoothing function and

a 40 µm FWHM on Titan.
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Figure 3.15: Shifting of the Kα image as a function of temperature. Image

courtesy of F. Pérez.

The Kα imager has a very low bandwidth of 6 eV centered at 8048 eV.

So if the Kα line shifts spectrally it causes the emission to be decreased.[53] The

recorded signal would be reduced in high temperature regions even if the same

amount of Kα was emitted. This phenomenon includes both actual shifting cause

by ionization for instance and broadening, caused by Stark or doppler broadening.

All effects caused by an increase in the Copper temperature. However, we have run

simulations using atomic codes that show these processes should not play much of

an role until temperatures reach above 100 eV as is shown in Figure 3.15. All of
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our modeling suggests that such temperatures are not reached our experiments.

Additionally, to verify that such shifting/broadening did not occur we looked at

the ratio of integrated yield from both the Kα imager and the HOPG spectrometer

and verified that their ratio was constant for a given experimental setup over the

range of intensities studied. If there was significant shifting/broadening we would

expect to see variation in this ratio as a function of laser energy, which was not

observed, as shown in Figure 3.16.
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Figure 3.16: Ratio of integrated Kα signal from the HOPG spectrometer versus

the integrated signal from the Kα imager. No dependence on Kα signal level

is observed and the ratios are fairly consistent, which is in agreement with the

assumption that no shifting was observed.



4 Particle-In-Cell Simulations

4.1 The direct-implicit PIC Method

The interaction of high-intensity lasers with solid-density matter creates a

significant challenge for computer simulations. On one hand, individual electron

motion must be resolved to capture the non-linear interaction of these relativistic

particles with the laser. On the other hand, the number electrons within a relatively

small 10 µm cube is already around 1014 which is a tremendously large number

to simulate. Fortunately, the development of particle-in-cell (PIC) simulations

has been developed to meet this challenge. In our simulations we will use the

direct-implicit PIC code LSP.[55]

!"#$%&'()

*+,'()

Figure 4.1: Cartoon of a PIC simulation with macro-particles existing continu-

ously in space and the fields calculated on a spatial grid.

The PIC approach to these problems is to aggregate the mass and charge of

many similar individual particles into one entity; called a macro-particle. In LSP,

63
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the macro-particles exist continuous in the space, while fields are calculated along

a grid imposed in space as shown in Figure 4.1. The macro-particles preserve the

charge-to-mass ratio of the individual particles and thus react identically to the

Lorentz force that drives laser-acceleration. The acceleration due to this force is

presented in discrete form[55] in (4.1).

∆p̂

∆t
=

q

mc

[
E +

p̂

γ
×B

]
(4.1)

Here q, m and p̂ are the charge, mass and normalized momentum (p̂ =

p/mc) of the particle. The speed of light is c, ∆ denotes changes over a time

step, and E and B are the electric and magnetic (EM) fields. The motion of

these particles then influences the development of EM fields through the discrete

Maxwell’s curl equations[55] shown in (4.2) and (4.3), where J is the current and S̃

is the implicit susceptibility tensor, to be explained shortly.

∂E

∂t
= ∇×B− J− S̃ · E (4.2)

∂B

∂t
= −∇× E (4.3)

In the so-called explicit PIC model, the EM fields are calculated at exactly

the same time as they are used to accelerate particles. In order for this method to

maintain numerical stability the plasma frequency must be resolved at all times

and locations (i.e. ωpe∆t < 1). However, for solid-density material, resolving such

a time scale is not computationally feasible. To address this difficultly, the so-called

direct-implicit method was developed.[74] This is used by LSP in the following way:

Instead of calculating the Lorentz force from quantities known at the present time,

it uses a predictive method to estimate what the EM fields and momentum will

be in the future and averages this with the past. To correct for errors created by

these predictions a corrective implicit susceptibility tensor S̃ added to the electric

field evolution.

This predictor-corrector method has the effect of smoothing over high-

frequency modes. This allows the implicit simulations to remain stable even when
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the plasma frequency ωpe is unresolved, though in such situations plasma waves

will also be unresolved. Thus this method does not exactly allow the modeling

of plasma physics within solid-density materials, but it does allow plasma physics

to be modeled alongside such materials. For instance, in this dissertation, a laser

accelerates electrons from a hot low-density plasma into a cold solid-density mate-

rial. Such a situation ideal for an implicit PIC model. The model resolves ωpe for

the laser interaction in the plasma, and can computationally-manage solid density

material, where resolution of ωpe can be neglected due to strong collisional effects.

Another feature in LSP that provides increased stability and accuracy at

decreased computational cost is its fluid/kinetic approach to particles. In LSP, a

kinetic macro-particle is considered as a single particle, as described above. On the

other hand, a fluid particle is a representative of a non-relativisitc Maxwellian dis-

tributed ensemble of particles that have both a temperature and a directed energy.

In addition to being pushed by the Lorentz force, such particles are also explicitly

influenced by the pressure and temperature gradients created by adjacent fluid

particles. As these particles already represent a full distribution function, such a

distribution need not be resolved discretely with individual particles. Thus this

fluid modeling allows for a decreased number of particles, which reduces the com-

putational load. In general, these fluid particles are used to model the background

high-density material; since they are non-relativistic they cannot be used where

the laser is present.

4.2 Collisions and Resistivity

As discussed above, the simulations in this dissertation often include solid-

density materials, where collisional effects dominate over the plasma response.

In LSP the collisions are treated with two separate methods. The high-energy

relativistic particles use a test-particle model.[33] While the background collisions

between use a grid-based method with an averaged collision frequency.[75]

The collisions within the background material are important to accurately

model the return current within the plasma. This return current is generated to
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satisfy the current neutrality requirement as we have described in Section 2.4.3.

This return current is important because it is low energy and thus is very collisional.

As the electrons collide within the material, they induce an electric field. This can

be thought of as an Ohmic field, with E = ηj, where E is the electric field,

η is the material resistivity and j is the current density of the return current.

In some, so-called hybrid-PIC codes[76, 77] the resistivity is imposed as a value

taken from the properties of the materials. However, in LSP the resistivity arrises

from modeling of the particles collisions themselves, which then gives an effective

resistivity. The collision frequencies for fluid particles used in LSP are taken from

the Lee-More[65] model with Desjarlais[65] corrections, called the LMD model. This

model is dependent on the ion density, ionization state and electron temperature of

the material. This assumes that the plasma is locally charge neutral, which is not

the case when plasma waves are included, as when modeling the laser interaction.

In such situations, the background material is represented by kinetic particles

that undergo collisions using the Spitzer model,[63] which is capped at the peak

collision-frequency found from LMD, usually around 100 eV.

4.3 Benchmarking

The collisions of the high-energy relativistic particles are modeled using a

test-particle method.[33] In the high-density material these collisions will play a

major role in both the stopping power of electrons and the amount of angular

deviation that they experience.

Before using LSP to model our experiments, it was necessary to verify that

LSP was implementing the physical models in an accurate way. The experiments

that will be modeled rely heavily on the transport of electrons through matter and

the Kα radiation that they generate. Thus it was important to verify the stopping

and scattering of LSP, as well as, the Kα generation.



67

4.3.1 Benchmarking of Stopping Power

In LSP the collisions of relativistic electrons is split into two components:

the stopping power, dE
dx

, and the scattering, dσ2

dx
. The stopping power modifies the

energy of the electrons (i.e. the total momentum of the electron) and the scattering

modifies the direction of the direction of the particles momentum. LSP uses what

is know as the Atzeni[33] as discussed in Section 2.4.5

This stopping power takes into account both the energy lost from the rela-

tivistic electrons colliding with the background plasma and the energy that is lost

to plasma waves in the background plasma. Due to the fact that LSP will not

be resolving the plasma waves in our solid density targets, this is the appropriate

equation to use.

To correctly benchmark the stopping power, we must remove factors that

would change a particles energy. So in this simulation we completely turn off the

fields. Naively, one might think that the measuring the distance that an electron

traveled before stopping would be sufficient to verify that the stopping power was

correct. However since the electrons also scattering in the material, this effectively

shortens the distance that they travel, which makes it a poor way to verify the

stopping power. So instead the following process was used: A mono-energetic

beam of electrons was injected at the same instance in time into an infinite block

of solid Cu. As the electrons all began with the same energy at the same time,

the total energy of the beam equal to the number of electrons multiplied by the

energy of each electron, E . Since the electrons are losing energy at the same rate,

the energy loss per time, dE
dt

, is determined.

dE
dt

=
∆E
∆t

dt

dx
=

∆E
∆t

1

v
=

∆E
∆t

1

c
√

1− (E/mc2 + 1)−2
(4.4)

Thus, with this method, it is possible to determine the stopping power that LSP

is using without the complications of scattering.

In Figure 4.2 the results of the LSP simulation and analysis are plotted

against the analytically derived Atzeni stopping power.[33] Notice that they match

quite well, however the Atzeni stopping model does not include the energy loss

due to radiation, which is a major loss of energy as electrons reach relativistic
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Figure 4.2: Benchmarking results of the stopping power of electrons in Cu.

velocities. The radiative losses were included either by one of two methods. The

collisional Monte-Carlo portion of the code, which replicates the ITS[78] code can

be implemented for collisions and radiation. Alternatively, LSP can be used with

the deterministic radiative stopping power from Dahl.[79] There is some difference

between the radiative stopping power calculated from each model, however the

difference is less than 10% which will have little affect in our analysis.

dE
dx

∣∣∣∣∣
rad

= E
(

716.4g cm−2A

Z(Z + 1) ln(287/
√
Z)

)−1

(4.5)

It should be noted that when using the initial version of LSP, the stopping

power was not calculated correctly. It was only after changes made to the source

code by A. Link that the stopping power was reproduced accurately. Additionally,

the Dahl radiation method was implemented by C. Orban.

4.3.2 Benchmarking of Scattering

The scattering process is LSP works in conjunction with the stopping power.

As the stopping power changes the absolute magnitude of the momentum, the

scattering changes the direction of the momentum. For electrons, LSP uses the
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small angle scattering formulation with a mean angle of 〈Θ2〉. In this method the

mean angle is described by Atzeni.[33]

d〈Θ2〉
dx

= 2
e4

4πε20

1

p2v2
[Lei + Lee] (4.6)

Lei = Zni × Z
(

ln Λ− 1− β2

2

)
(4.7)

Lee = Qni ×
(

ln Λ− ln[2(γ + 3)] + 1

2

)
(4.8)

In these equations, ln Λ = 4πλD
λdB

and λD =
√

kbTε0
(Qni)e2

is the debye length.

Here Lei and Lee are the scattering terms for relativistic electrons scattering off of

ions and other electrons. Notice that in the equation for Lee that the charge state

of the ions Q is used. This means that scattering only occurs on free electrons

and bound electrons are ignored. It is debatable where or not the bound electrons

should be included in this calculation and this was not discussed by Atzeni[33] given

that they considered only fully ionized plasma. Given the fact that Lei scales with

Z2 and Lee scales with Q or Z, we can avoid this argument by stating that we will

be considering high Z materials (e.g. Cu and Au), where the electron scattering

is negligible.

To verify that scattering was working correctly, the following simulation

was set up in LSP with the fields disabled. Electrons were injected into a thin

(1 to 10 µm) Cu foil, as shown in Figure 4.3. The electrons were injected with

the same momentum in the forward z−direction and with no momentum in the

transverse dimensions. After passing through the foil, the momenta of the elec-

trons was recorded. The change in momentum is described by the value of Θ. As

described in the appendix, this is the ratio of forward going momentum to trans-

verse momentum, cos Θ = pz/P , where pz is the forward momentum and P is the

total momentum. Figure 4.4 shows the momentum distribution of the 18 MeV

mono-energetic electron beam after passing through a 10 µm Cu foil.

The root mean squared of Θ for a given thickness, d〈Θ2〉/dx, was found

for the different energies of electrons and compared with the values expected from
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Figure 4.3: Setup of the LSP scattering benchmarking simulation.
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Figure 4.4: Distribution of angular momentum of 18 MeV electrons after passing

through a thin foil. The bars show a histogram and the line is a gaussian fit to the

data.

equation (4.6). After some changes to the LSP source code by Dr. A. Link, the

values were found to match well, as seen in Figure 4.5. It is also interesting to

notice that, unlike the stopping power, the values from ITS[78] are similar to those

used in LSP.
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Figure 4.5: Benchmarking of the electron angular scattering in LSP.

4.3.3 Benchmarking of Kα x-ray Cross Sections

Cross sections

A careful look at the ITS xgen source file, and the output file1, show that

they use the cross section generation from a paper published in 1967 by Kolben-

stvedt.[80] One reason not to use this is that people do not seem to believe this

paper, as the following was stated by Haque.[81]

The [Kolbenstvedt] model, in its original form, has the drawback in that
it unusually overestimates the cross sections from the threshold to peak
region and underestimate them at ultra high energies.

For this dissertation, the cross-section from a more recent paper published

by Hombourger[71] was used.2 This cross section is perhaps more accurate, but

looking at the data it is not completely clear. Though it is likely that the Hom-

bourger cross section is more accurate across the range of atomic numbers, since

1You can take a look at this by running xgen, selecting the PRINT OUT option, look in the
fort.7 file to find the cross sections (which are actually probability per path length), which are
in units of n×cm2/g, so multiply by ρ to get n/cm.

2As a note, the relativistic correction factor is incorrect (Gr) in the Hombourger paper (equa-
tion 1.5) and the one that is correct can be found in a paper by Casnati,[70] where the factor is
R (equation 0).
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these formulas are only dependent on the atomic number. It is also interesting to

note that there are many other ways to calculate these cross sections [70, 81, and

refs within]. Since I am only interested in Cu, I plot the Cu cross sections vs

the available data as compiled by Lui.[82] The two methods show a considerable

difference, which is the same as noted in the previous quote.

Figure 4.6: Plot of the Hombourger and Kolbenstvedt cross sections vs the ex-

perimental data. The data was taken from Ref. [82] and is named according the

naming convention within the article.

Kα Generation

To determine how electrons will generate Kα emission, we look into the Kα

generation per energy loss, fn.

fn(E) = ωkPkαniσ

(
dE
dx

)−1

(4.9)

Where ωk is the probability that a k-shell photon emission will occur (Kα

or Kβ), Pkα is the probability that there will be a Kα produced (Kα1 or Kα2), ni is

the number density of ions, σ is the cross section (as shown above) and dE
dx

is the

stopping power of the electron. The numbers for ωk = 0.44 and Pkα = 0.88 are
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from Refs. [83,84]. The number density, ni, is 8.48× 1022 n/cm3 and the stopping

power is taken from NIST ESTAR tables.[48] These are plotted in Figure 4.7.

Figure 4.7: Kα generation per energy loss.

Next, the total Kα energy produced from an electron as it slows in the

material is examined. This only looks at energy loss through collisions. The

average Kα energy is Eavg = Pkα1Ekα1 + Pkα2Ekα2 = 8041 eV.

Etot(Ein) = Eavg

∫ Ein

0

fn(E)dE (4.10)

Figure 4.8: Conversion efficiency into Kα photons (linear scale).

Finally, the conversion efficiency is plotted in Figure 4.8. This is the energy

produced by Kα divided by the input electron energy. This shows that the two

cross section models give significantly different results.
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4.4 Equation-of-State Models in LSP

Another piece of physics that is included in our LSP simulations is the

equation-of-state. This is a way to determine the ionization of the material as

well as the amount of deposited energy that it takes to raise a material to a given

temperature (i.e. the heat capacity).

The ionization of the material was included in one of two ways depend-

ing on if the material was being modeled as a fluid or kinetically. For the fluid

modeling (as done in the transport simulations), an equation of state model from

PROPACEOS[85, 86] was used. This models the equation-of-state of the plasma in

equilibrium. It is mostly dependent on the temperature of the system, but also

is affected by the density. The average ionization state, Z∗, for solid density Cu

is shown in Figure 4.9 as a function of temperature. Also shown is the internal

energy vs temperature.

Figure 4.9: Equation-of-state in Copper. (Left) Heat capacity Cv and (right)

average ionization state Zbar as a function of electron temperature.

When using kinetic particles the ADK[59] field ionization model was used,

this model is described in more detail in Section 2.2.1. This model is used in

the Laser-Plasma Interaction (LPI) simulations. In these simulations, the most

important physics occurs in the relatively low density (1019 to 1022 n/cm3) plasma

where the laser interacts. Since the density is low, collisions between particles are
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rare and the field is the dominate component to ionization.

4.5 Proton Layer Benchmarking

As discussed previously, the charging of the wire plays a large role in how

the system evolves. Thus including all of the physics relevant to this charging

is important. Previous work has studied the build up of electric charge along

a vacuum interface due to electron acceleration through a target.[46] This work

showed that LSP models the electric fields correctly as compared to analytical

solutions.

For the simulations for this dissertation a proton layer on the edge of the

wire are included. The protons exist in the simulation due to contaminants in

the air and in the target chamber. These leave a ∼ 10 nm layer of hydrocarbons

(mostly hydrogen) on any target. We followed the paper by Allen[87] to estimate

the amount of contaminants that should be present on the Cu. In reality, there is

only a few nm of material, however this is not feasible to model in our simulations

and we generally use 1 µm cells for the transport simulations. Most simulations

modeling this contaminant layer do not use nanometer sized cells, however many

use cells of 0.1 µm. In order to make sure that our simulations ran correctly

with 1 µm cells, we ran a test case comparing 0.1 to 1 µm cells, while using the

same number of macroparticle protons. The proton densities of these simulations

are shown in Figure 4.10. In this test simulation, electrons are injected into a

thin Cu foil with protons on the rear side of the foil. The 0.1 µm cell simulation

shows a conversion efficiency of protons from electons of 0.36% and the 1 µm cell

simulations shows 0.31%. This close match shows that the use of 1 µm cells is

appropriate for our simulations.

The benchmarking performed in this chapter gives confidence that impor-

tant features of LSP, such as collisions and Kα cross sections, are implemented

correctly in the code. As these simulations are used to interpret the experimental

data and relate it to electron spectra, it is very important that the code is well

benchmarked.
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Figure 4.10: Comparison of cell size for proton acceleration from a thin foil.

(Top) Cell size of 1 µm with a conversion efficiency is 0.36%. (Bottom) Cell size

of 0.1 µm with a conversion efficiency is 0.31%.



5 Cone-Wire Experiments

5.1 Experimental Setup

The purpose of this dissertation is to increase our understanding of electrons

accelerated by short-pulse laser interactions, especially in the context of the fast

ignition (FI) scheme. To achieve this, a cone-wire target was used as a diagnostic

to characterize the electron spectra for different laser parameters. This target

consists of a hollow Au cone attached to a Cu wire, as shown in Figure 5.1. The

cone is 20 µm thick around the sides and 10 µm thick at the tip. The cone tip is

30 µm wide with a 30◦ opening angle. The cone is 1 mm long. The Cu wire is

attached to the outer cone-tip with UV curing glue and is 1.5 mm long with a 40

µm diameter. The laser is incident on the inner cone tip. This causes electrons to

be accelerated through the Au cone tip and into the Cu wire.
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Figure 5.1: Dimensions of the cone-wire targets used in our experiments to diag-

nose the electron spectra of high-intensity lasers. The laser comes from the left in

this diagram and is incident on the inner cone tip.

As electrons pass through the Cu wire they cause Kα photons to be emitted

and these are collected by a calibrated spectrometer and a spherical imager, as

77
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discussed in Section 3.3 and 3.4. The Cu Kα photons have an energy of 8 keV,

which corresponds to an attenuation length of 22 µm in solid density Cu. For this

reason, the wire radius was chosen to be relatively thin. We assume that the wire

is uniformly emitting across a given circular cross-section; this is expected from

the scattering in the thin wire and is verified through simulations. This allows us

to determine the opacity of the wire as a function of the view-angle of our imager

as derived in the Appendix. The length of the wire was chosen to be as long as

possible while fitting within the field of view of the Kα imager. This allowed us to

observe the full Kα signal from electrons within the wire.

The dimensions of the cone were chosen to be similar to the cone used for

fullscale FI implosions. Thus making the conditions of the interaction relevant in an

FI context. The Au cones were manufactured at Rutherford Appleton Laboratory

in the UK for the Titan experiments and at General Atomics for the Trident

experiment. The attachment of the cones to the wire was performed for both

experiments at General Atomics in San Diego. Care was taken to use as little glue

as possible and to align the wires directly in the middle of the cone. Since these

are relatively difficult to assemble, the targets were all characterized before use in

our experiments and verified to be in good condition before use. Figure 5.2 shows

a sample of the characterization of these cone-wires.
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Figure 5.2: Photographs of the cone-wires. (left) Side on view of the wire and

cone connections and (right) interior cone tip.

These targets were shot at both the Trident and Titan laser facilities. The

laser focal spot sizes were optimized to obtain the smallest focal spot possible, as

shown in the Section 3.1.2, and was kept constant for all shots. The pulse length
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was also kept as short as possible. To explore a range of intensities, the energy of

the lasers was varied from 24 to 75 joules on Trident and from 16 to 160 joules on

Titan. This covered an peak intensity range from 1019 to 1020 W/cm2.
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Figure 5.3: Diagram of the experimental setup for laser experiments using cone-

wire targets. The setup was similar on both the Trident and Titan laser systems.

The laser was used at normal incidence to the cone tip. The HOPG spectrometer

and Kα imager were the main diagnostics.

As discussed in Section 3.1.3, the major difference between the Trident and

Titan laser systems is in the amount of prepulse laser energy prior to the main laser

pulse. The prepulse can create a large amount of plasma that moves the critical

surface of the target further away from the initial position. This preplasma can

also cause non-linear effects, such as relativistic self-focusing and filamentation,

which will change the way that the laser interacts and accelerates electrons. The

Trident laser has a much lower amount of prepulse energy than Titan, thus we

expect the amount of preplasma to be significantly reduced.

The cone-wire experiments were set up with the laser pointing directly down

the cone so that it impacted the tip of the cone at normal incidence. We measured

the total amount of Kα radiation that was emitted by the wire using a calibrated

HOPG spectrometer at 17◦ from the wire normal. Since the Kα cross section is
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relatively constant for electron energies from 0.5 to 10 MeV, this diagnostic gives

us a measurement of the total energy that is coupled into the wire. To obtain an

image of the Cu Kα x-rays emitted from the Cu wire, we used the spherical crystal

imager, which reflects x-ray energies of 8048 eV with a ∼6 eV bandwidth. This

diagnostic was placed at 19◦ from the wire normal. A diagram of the experimental

setup is shown in Figure 5.3.

5.2 Coupling Efficiency

In Fast Ignition, electrons will be accelerated by a laser into the fuel to

provide heating. A cone is used to create a plasma-free path for this laser to

propagate, however the electrons much get past the tip of the cone to deposit

energy into the core of the fuel. The wire placed at the end of the cone is a

diagnostic analog to the imploded fuel core in Fast Ignition. The amount of Kα

radiation that is created by electrons is related to the amount of energy that is

deposited in the wire, as shown in Section 4.3.3.

Thus we use the amount of Kα generated by the cone to diagnose the amount

of energy lost within the wire. This value is corrected for the opacity of Cu to 8

keV electrons, which are assumed to be emitted uniformly and isotropically within

the wire. This assumption is made due to the small radius of the wire and is

corroborated in simulations. The opacity calculation is shown analytically in the

Appendix.

Once we have the opacity corrected Kα values we divide these by the total

laser energy to get the conversion efficiency into Kα photons. This is called the

Kα coupling efficiency and is plotted against laser intensity in in Figure 5.4. The

data shows no correlation between coupling efficiency of electrons into the wire

and intensity for a given laser system. However, there is still a variation of the

coupling efficiency that is around 50% for the same laser at similar intensities.

There is an definite difference in the shot-averaged coupling efficiency be-

tween Trident, at 0.00907%, and Titan, at 0.00340%. These comparisons are done

of a range of intensities, but the prepulse energy is kept as low as possible. By
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Trident Ultra-High-Contrast 

Titan Low Contrast 

Figure 5.4: Kα coupling efficiency on the Trident and Titan laser systems.

comparing the averages on both facilities, we see that there is a 2.7x increase in

coupling efficiency on Trident as compared to Titan. This difference is due to the

different amount of preplasma that is present in the cone due to different amount

of prepulse laser energy incident on the tip prior to the main pulse of the laser.

In the case of Titan, there is a large amount of preplasma filling the cone, which

pushed back the critical surface and implies that electrons are accelerated further

away from the cone tip, and will not be directed toward the wire.

This work is an extension of work that we have done previously[41, 43] as

shown in Figure 5.5. In these past experiments, we had injected an additional

amount of prepulse into the cone to determine its effect on the coupling. As can

been seen in Figure 5.5, there is a dramatic decrease in coupling as the prepulse

energy is increased. However, the difference is that on Trident, for ultra-high-

contrast, we move into a regime where there very little prepulse. Instead, any

preplasma that is created should be due to the rising-time of the laser, which

occurs on time scales that are less than 0.1 ns. We can think of this data as

perhaps the best coupling that one could expect, because the electrons should be

injected at distances that are quite close to the cone-tip.
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2.7x 

Titan Low Contrast  
Injected Prepulse 

Figure 5.5: Kα coupling efficiency on the Trident and Titan laser systems versus

prepulse level. The Trident high contrast (purple triangles) and Titan Intrinsic

Low Constrast (gray diamond) are from this work. The Titan injected Prepulse

(red triangles) is also from the Titan experiment, but has been previously been

published[41] and thus is not discussed further in this text.

5.3 Kα Falloff Lengths

In order to assess the spectrum of the accelerated electrons we use an image

of the Cu Kα emitted from the Cu wire. By looking at the extent of the Kα emission

we can infer the energies of the electrons. This is because the electrons with more

energy will travel further in the wire and thus will emit Kα radiation further into

the wire. Figure 5.6 shows an image of the raw data from one shot on both Trident

and Titan. This raw image was smoothed slightly using a median filter to remove

noise. The images have also been background subtracted with a background taken

from above and below the image of the wire. The data from Trident was acquired

using Imaging Plates (IPs), while Titan used a CCD camera. Notice that the

width of the wire in the Trident data appears slightly larger, this is due to the

poorer resolution of the data taken on the Trident laser.

These images were averaged in the transverse direction (radially along the

wire) and then a lineout was taken longitudinally. The lineout was normalized to
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(a) Image of Kα radiation from Trident shot 21590 with 75 J of laser energy.

(b) Image of Kα radiation from Titan shot 20090826s01 with 161 J of laser energy.

Figure 5.6: Raw images of the Kα radiation coming from the Cu wires. The

colormaps are normalized to the peak signal.

total amount of Kα on the shot as measured by the HOPG spectrometer. The

lineouts corresponding to the raw images in Figure 5.6 are shown in Figure 5.7.

When discussing the cone-wires, it is useful to identify the different features

of the lineouts, because different portions of the electron spectrum are responsible

for creating the different parts. There are four important features: 1) the peak of

the emission, 2) the slope of the initial falloff, 3) the flat portion in the middle,

and 4) the bump at the end of the wire.

The peak of the emission at the beginning of the wire is the highest part of

the lineout. While this seems useful in the analysis of electrons it is susceptible to

many unrelated factors, and thus must be interpreted with care. The abrupt change

in signal at the peak means that the height of the observed signal will be affected

by the resolution of the imaging system. Uncertainty in this resolution will lead to

uncertainty in the peak. Additionally, there is the issue of temperature dependent

shifting of the Kα lines, which will reduce the recorded signal as discussed in

Section 3.4. Since the beginning of the wire has the largest current of electrons,

it will heat up the most and thus may be the most affected by the shifting of the

lines. Thus the height of the peak is susceptible to factors other than the amount

of Kα emission and thus must be interpreted with care.

The initial falloff of electrons is very important to the study of the electron

spectrum. This falloff extends for about 500 µm from the peak of the emission.

Here, unlike the peak of emission, the variation in signal is continuous, and there-
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Figure 5.7: Lineouts of the Kα radiation coming from the Cu wires from (top)

the Trident laser at 75 and (bottom) the Titan laser at 161 J.

fore is less susceptible to the resolution of our imager diagnostic. This slope will

be influenced by the energy of electrons in the wire. Since more energetic electrons

can travel further in the wire they will cause the emission to falloff over longer

distances than less energetic electrons, and thus we can use the distance of the

initial falloff to infer the energy of electrons traveling through the wire. As we will

show shortly, this portion of the wire is mainly a constraint on the 0.2 to 2 MeV

electrons. This is because electrons below 0.2 MeV do not have enough energy to

get past the cone tip and electrons above 2 MeV have falloff distances well above

500 µm.

The next feature of these lineouts is the flat portion along the middle sec-

tion, which occurs from about 500 to 1000 µm in the wire. This portion of the
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emission is quite flat and is due to electrons not experiencing much energy loss

within the 1.5 mm of the wire and thus their emission is relatively constant through

out the entire wire. These electrons have energies greater than ∼ 2 MeV and are

out of the energy range of the cone-wire diagnostic.

In many of the lineouts of the wire emission, there is a secondary peak,

or bump, at the end of the wire. This is most noticeable on the Titan lineout

in Figure 5.7. The height of this bump is often more than twice the height of

the emission along the flat middle portion of the wire. In some respects, this is

the most mysterious part of the wire, and understanding how this is created will

require modeling of the development of both electric and magnetic fields in the

wire that play a large role in the transport of electrons. We will discuss this in

detail in the Transport Section, and show that the physics that creates this bump

is complicated and highly non-linear. Thus, while interesting, the generation of

this bump does not tell us much about the energies of the electrons that created

it.

Since, the most important constraint on the electrons is the initial falloff

of electrons, it is useful to quantify this slope for comparison across different laser

conditions. To do this, an exponential slope was fit to the wire f(z) = exp[−z/Lf],

were z is the dimension across the lineout and Lf is the falloff along the wire. This

was done by three different methods to get an understanding of the uncertainty

within these fits. The first method was to use two points separated by a given

distance and calculate the amount of signal drop-off between them. Care was

take to use points that were 50-100 µm away from the peak of the emission to

avoid any influence of the resolution of the imager. The second method was to fit

all of the points some distance from the peak with an exponential slope. Again,

here the region near the peak was avoided. Finally, the initital falloff was fit with

an exponential decay function convolved with a gaussian function to represent

the spatial resolution of our imaging system. This allowed us to fit both the

exponential falloff as well as the peak of the emission. These three techniques were

averaged to determine the falloff and the standard deviation was taken to quantify

the uncertainty.
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The falloffs are plotted as a function of laser intensity in Figure 5.8. We

see a strong dependence of the falloff on laser intensity at the individual laser

systems. This is expected, as previous work has suggested that the energy of

electrons increases as the laser intensity increases, due to the so-called j×B heating

mechanism[44] discussed in Section 2.3.3.

µ

Figure 5.8: Kα falloffs on the high-contrast Trident (red triangles) and low-

contrast Titan (gray diamonds) laser systems.

Along with the variation with intensity, there is a strong dependence of the

falloff distance with changes in the prepulse levels. At high-contrast on Trident

there is a longer falloff distance than at low-contrast on Titan. From this in-

formation, we can infer that the electron temperature within the wire is hotter at

high-contrast than at low-contrast, implying that preplasma decreases the electron

temperature. This is not consistent with previous work[88] showing the opposite

trend. This may be due to the fact that we measure only electrons that enter into

the wire. Electrons with higher energies may indeed be created at low-contrast,

but our data suggests that the ones that enter into the wire have lower energies.

As we will see later, there are strong electric fields that develop in the cone-wire

that cause electrons to be trapped within the system. Electrons with higher energy

have more kinetic energy to escape the electric fields and since they are accelerated
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further from the cone tip in the low-contrast case, perhaps they are more likely to

leave the system. This is a puzzle that we hope to resolve by modeling both the

laser-interaction and electron-transport physics.

Our experiments show a definite dependence in Kα coupling efficiency and

falloff along the wire on changes in both the laser intensity and the amount of

prepulse. This information will allow us to ascertain the electron spectrum and

conversion efficiency once we determine the relationship between these electrons

and the data that has been collected. To unwrap the electron spectrum, we will

start with simple models to get a basic understanding of how these wires respond to

electrons in Chapter 6. Then we model the full transport of electrons in Chapter 7

though the wire with inclusion of electric and magnetic fields, equation-of-state

and other important physcis. Finally, Chapter 8 will model the laser-interaction

itself and compare this to the experimental data.



6 Cone-Wires as Diagnostics for

Hot Electrons

6.1 Sensitivity Range to Electron Energies

The cone-wire targets can become very complicated systems with electric

and magnetic fields that strongly influence the transport of electrons through the

system. However, simple collisional models of electrons transporting through the

target and neglecting the fields can be useful to get an initial understanding of the

dynamics of the targets. Simulations were run using the hybrid-PIC code LSP.[55]
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Figure 6.1: Energy percentage remaining in mono-energetic electrons after pass-

ing through a 10 µm Au block.
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To understand the effect of stopping from the 10 µm Au cone tip, the col-

lisional stopping power of electrons in Au was integrated over 100 µm (negliecting

collective effects). The results are shown in Figure 6.1. A strong dependence of

energy is observed; where electrons below 0.2 MeV are completely stopped in the

cone, but electrons above 1 MeV only lose a small portion of their energy.

To determine the upper limit of electron energy sensitivity, electrons are

injected into an infinite, solid Cu block. The Cu block is an approximation of

the Cu wire, assuming that all electrons are reflected specularly from the wire

boundaries, as would be the case if there were very strong electric fields. For these

simulations, electrons are injected with a 45◦ FWHM gaussian angular distribution,

which is in agreement with previous simulations.[77]
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Figure 6.2: Cu Kα emission versus distance from mono-energetic electrons in an

infinite Cu block.

To get an upper boundary on the energy discrimination of the wires, we use

this simple model and inject mono-energetic electrons. As these electrons travel

through the wire they cause Kα photons to be emitted, which are measured by the

calculation. The results are shown in Figure 6.2. This shows a large difference in

the falloff between 0.5 MeV electrons and 1 MeV electrons, thus because the slope

is so different it is possible for us to distinguish between the two energies. However,

for energies greater than about 2 MeV one can see that there is little different in

the slopes of the Kα profiles. This means that it is difficult to distinguish the
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different between an electron of 2 MeV and one of 3 MeV. To summarize, the

cone-wire targets have a good sensitivity to electrons with kinetic energies from

0.2 to 2 MeV.

6.2 Relationship between Kα Emission and Total

Electron Energy

In this work, we are interested in determining the total amount of energy

that the electrons receive from the laser. Thus it is important to understand the

relationship between the total amount of Kα generated and the energy lost within

the wire. As noted in the diagnostics chapter, the Kα cross-section is relatively

flat for electron energies above 0.1 MeV. The Kα cross-section[70, 71] is plotted along

with the stopping power of Cu[33] in Figure 6.3.

Figure 6.3: Cross-section for k-shell ionization and stopping power for electrons

in solid density Cu.

To quantify the relationship between stopping power and Kα generation,

we explore two difference cases. The first case is the instantaneous energy loss

versus the instantaneous Kα generation, this is similar to an infinitely thin foil. As
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well as looking at all of the Kα generation and energy loss for all electrons, we also

look at the energy loss when we exclude electrons below 50 keV. The reason for

this is that these electrons generate no Kα radiation and thus skews the radiation

fraction; additionally in our experiment, these electrons will be stopped within

the Au cone. The second case is when electrons lose all of their energy in the

Cu block, which is the case of an infinitely thick foil. The results are plotted in

Figure 6.4. Notice that the conversion efficiencies are relatively flat from a 0.5 to

10 MeV exponential distributions. This means that Kα emission measurement is

a relatively linear diagnostic to determine the amount of energy lost within the

material. This is a powerful conclusion, since it states that the energy loss within

the wire can be calculated directly from the experimental data with very little

model dependence. However, one must be careful with this statement, because the

amount of energy lost within the wire may not be correlated to the total electron

energy accelerated by the laser. Electron energy can be lost in many other ways,

such as escaping in vacuum or loss within the Au cone.
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Figure 6.4: Kα generation efficiency by electron impact ionization.

We can make a rudimentary analytical model to determine the amount of

electrons that are trapped within the wire by estimating the electric potential along

the edges of the wire.
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6.3 Electrostatic Charging

Large amounts of electrons are accelerated into the target by the laser. At

the begining of the injection, the electrons will simply exit the target ballistically,

if they have enough momentum to overcome the collisional stopping power of the

target. However, as each succesive electron leaves the target, a charge builds up

on the target and prevents electrons from leaving if their kinetic energy is not

great enough to over come the potential. In time, the ions will accelerate outward

as they are pulled out by these fields, however the time scales for ion motion are

much slower than that of electrons due to their higher mass. The dynamics of this

charging are quite complicated (as will be discussed in Chapter 7), yet it is useful

look at this problem analytically to get an idea of the way that charge develops

across the target. To do this, the target is modeled as a wire capacitor surrounded

by a spherical conductor at infinity.

6.3.1 Wire charging

If we assume that the target is a capacitor, where V is the voltage of the

capacitor, Qloss is the escaped charge and C is the capacitance, then

V =
Qloss

C
(6.1)

The escaped charge is the charge of an electron qe times the number of

escaped electrons Nloss. To calculate the number of escaped electrons a zero-

dimensional method is used where all electrons with energies E great enough to

overcome the potential V will leave and those with lower energies will be trapped.

We assume that the electrons have an exponential energy distribution func-

tion
(
i.e. dN

dE = N
T
e−E/T

)
, with slope temperature T and total number N . The

escaping electrons are determined by integrating the distribution function from

the minimum energy to escape (i.e. E = qeV ) to infinity.

Nloss =
N

T

∫ ∞

qeV

e−E/TdE = Ne−qeV/T (6.2)
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Using the capacitor at infinity model from (6.1), the above equation deter-

mines the voltage of the target.

V =
1

C
qeNe

−qeV/T (6.3)

This equation is transcendental, but it can be solved using the Lambert

W function, which solves the equation z = W(z)eW(z). So we can manipulate the

previous equation to get it into the correct form.

qeV

T
eqeV/T =

q2
eN

CT
(6.4)

Where we can see that W(z) = qeV/T and z = q2
eN/CT . Combining these

two equations we get the solution for V , which shows the dependence of voltage

on the number, N and temperature, T , of injected electrons. We reformulate this

equation in terms of the total energy of injected electrons, Ee = NT . This equation

shows that the charging of the wire is dependent on both the slope temperature of

the accelerated electrons as well as their total energy.

qeV = T ×W

(
q2
eN

CT

)
= T ×W

(
q2
eEe
CT 2

)
(6.5)

6.3.2 Energy Fraction in Wire

Now we have an equation to determine the voltage of the wire, V , and thus

the minimum energy needed to escape the wire, qeV . We can then determine the

fraction of energy trapped within the wire. We determine the amount of energy

remaining in the wire, Ewire through integrating the energy distribution function

E × dN/dE from zero to qeV , where we have already solved for qeV .

Ewire =
N

T

∫ qeV

0

E × e−E/TdE = NT

[
1− e−qeV/T

(
qeV

T
+ 1

)]
(6.6)

The percentage of energy in the wire is Pwire = Ewire/Ee. Substituting in

the value of qeV from (6.5).

Pwire = 1− e−W

(
Eeq

2
e

CT2

) [
W

(
Eeq

2
e

CT 2

)
+ 1

]
(6.7)
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Interestingly the fraction of energy trapped within the wire is only depen-

dent on the parameter Eeq2e
CT 2 . For a given target, qe and C will be fixed, which

means that the energy fraction trapped with the target is a function of the total

electron energy Ee divided by the slope temperature squared T 2. We plot the en-

ergy fraction versus this parameter in Figure 6.5. Here we can clearly identify three

different regimes. First, when there is only a small amount of energy input or high

slope temperature, then the target behaves in a no-field manner and no electrons

are trapped within the wire due to fields. In the case where we have injected a

large amount of energy or low slope temperature, then the field are very strong

and almost all of the electron energy is trapped within the wire. Connecting these

two regimes is a transitional regime where the amount of energy trapped within

the wire is strongly dependent on the amount of energy in the electrons and their

temperature.
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Figure 6.5: Energy fraction trapped in wire for a given Eeq2e
CT 2 .

6.3.3 Capacitance

To get an idea of which regime applies to our experiments we must deter-

mine the capacitance of the wire. The capacitance of a finite length, finite radius

wire is derived in a paper by Jackson,[89] where R is the radius of the wire, L is

the length of the wire and Λ = 2 ln(L/R). In this equation O(1/Λ3) indicates that
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the value is correct to order 1/Λ3.

C = 4πε0
L

Λ

{
1 +

0.6137

Λ
+

1.0868

Λ2
+O(1/Λ3)

}
(6.8)

= 2.10× 10−14 farads at L = 1.5 mm, R = 20 µm

6.3.4 Expected Values

We have now developed some estimates of how the wire charges and we

have calculated the expected value of capacitance. So we can now get an idea of

how the wire should behave. From our calculated capacitance, we have

Eeq
2
e

CT 2
= 47.7× Ee,J

T 2
hot,MeV

(6.9)

In our experiments we expect to have total electron energies from 1 to 20

J and electron temperatures from from 0.1 to 5 MeV. This gives values of Eeq2e
CT 2

from 100 to 104. As is seen from the graph in Figure 6.5, these values are within

the transitional regime. This means that the amount of energy that is trapped

within the wire and the dynamics of the system are highly dependent on the

amount of energy and temperature of the electrons. This observation illustrates

the need to model the cone-wire system including the full physics of electric charge

build up along the wire. This shows the importance of running simulations that

model the generation of electric and magnetic fields self-consistently with Maxwell’s

equations.

6.4 Resistive Stopping

In addition to the electric potential build up along the wire, another collec-

tive effect that can potentially occur within the cone-wire system is called resistive

stopping. This occurs when a substantially high current of electrons passes through

a dense material. As shown in the physics section, this causes a return current

to be drawn that will match the forward current density. Since this return cur-

rent is low energy, it is highly collisional and thus an ohmic electric field develops.

The strength of the electric fields can be given by a simple Ohm’s law E = ηj,
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where η is the resistivity of the material, E is the electric field and j is the current

density of the background electrons. For a beam of electrons with average kinetic

energy T and total energy E, which are evenly distributed over the wire with ra-

dius R = 20 µm and for a time period that is represent by a gaussian function of

full-width-at-half-maximum τFW = 650 fs, we can calculate the peak current, jpeak.

jpeak = qe
E

T

1

πR2

1

τFW

√
4 ln 2

π
(6.10)

For a beam with 10 J of electron energy and a mean kinetic energy of 1 MeV

the peak current density is 1012 Amps/cm2. From the physics section, a copper

plasma at 1 eV has a resistivity of around 10−7 Ω m and a peak resistivity of around

10−6 Ω m. These values give peak electric fields of 1 and 10 kV/µm, respectively.

Such field strengths are comparable to the stopping powers of electrons, as shown

in Figure 2.11 of Section 2.4.5. Therefore depending on the resistivity, the electric

field strength, may or may not, play a large role in the development of the system.

Again, we are in a regime, where treating the growth or electro-magnetic fields is

very important, and simulations including this are necessary.



7 Transport Simulations

Now that we have a qualitative understanding of the relevant physics for

the cone-wires, we move on to a more quantitative treatment where we model the

electron transport including the self-consistent generation of electric and magnetic

fields. To do this work, we run hybrid-PIC simulations using the code LSP. The

general working of PIC simulations and LSP is described in Chapter 4; here we

describe the specific setup for our runs. A depiction of the geometry is shown in

Figure 7.1. This model includes the majority of the cone-wire target and in the

same dimensions. The Au cone extends backwards 300 µm from the tip and the

1.5 mm Cu wire is completely included, both were modeled at solid density.

7.1 Simulation Setup

Both the Au cone and the Cu wire are included in this simulation and

are modeled as fluid particles. These ions and electrons interact with each other

through the equation-of-state provided by PROPACEOS[85, 86] and temperature-

dependent collision frequencies.[64, 65] Vacuum boundaries of 1 mm were extended

from the edges of the target to allow particle trajectories to be fully realized and

the full field evolution to take place. A single cell of protons at 2 × 1020 cm−3

density was distributed along the edges of the cone and wire. These represent the

contaminant layer found on most targets and are important because protons can

accelerate more quickly than heavy ions and thus change how fields develop with

time. The cell size used in this simulation is 1 µm in the solid density plasma and

cells increase in size in the vacuum to speed up the simulation. The time step is

0.5 times the Courant limit, that is particles traveling at the speed of light would
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need 2 timesteps to cross the smallest cell.
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Figure 7.1: Setup of the transport simuations in LSP.

In these transport simulations, the laser interaction is not modeled, instead

electrons are injected at the At cone-tip. The electron energy distribution was

the summation of one or two decaying exponentials, f(E) = exp(−E/T ) with

kinetic energy E and slope temperature T . The electrons were given a gaussian-

distributed momentum, as a function of solid angle. They were injected at the

inner cone-tip of the target with a gaussian distribution in space along the radius

of the tip that matched the spatial distribution of the laser. The injected profile

in time was a gaussian function matched to the laser’s profile. The laser temporal

and spatial functions were not precisely the same on Trident and Titan, however

they are very similar, as described in Chapter 3. Thus, to not complicate things,

the same spatial and temporal distributions were used when trying to match the

data from both experiments. The electrons undergo collisions treated through a

test particle model[33] with the addition of radiative stopping[79] and Kα generation

cross sections.[71]

The purpose of these simulations was to diagnose the falloff and coupling

efficiency of given electron spectra. We need to run many simulations and vary the

parameters of injection in order to understand these dependencies. However, in
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order to fully understand the physics that underlie these dependencies, we first de-

scribe a single simulation and characterize the transport of electrons. As the main

physics of the transport does not change, this description will be representative of

all of the simulations that were run.

7.2 Understanding the Transport of Electrons within

the wire

The particular simulation that we look at had a total injected electron

energy of 3.5 J. The energy spectrum was a two temperature exponential function,

with a 0.5 MeV cold slope and a 7.0 MeV hot slope, where 70% of the energy was

contained in the hot component. We differentiate these two electron populations as

the COLDS and the HOTS. Other than their slope temperatures, these electrons

are identical. The electrons had a 45◦ gaussian angular distribution.

To understand the evolution of electrons we look at three snap-shots in time

and describe the trajectories of electrons and the interaction/creation of electric

and magnetic fields.

7.2.1 Initial Time: Electrons Initial Injection

The first snapshot is at 2.5 ps, in Figure 7.2, after most of the electrons

have been injected into the simulation (from the lefts side). Already, there is a

large difference in the behavior of the HOTS and COLDS. In both populations,

there is a bunch of electrons that are traveling ahead of the others. They are

the first electrons injected so they travel ballistically (i.e. unimpeded by fields),

because the charge within the system is small enough that the fields have not yet

gotten large. However, electrons traveling later in time already begun to experience

confining electric fields that trap them within the wire. As a consequence, later

electrons cannot escape the wire as easily. Notice that the COLDS are much more

concentrated within the wire, as they do not have high enough kinetic energy to

escape. The triangular shape at the start of the wire is due to the motion of
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Figure 7.2: Injected electron density plots during the first snap-shot of electron

transport simualation at 2.5 ps.

protons. As protons are pulled from the wire surface by strong electric fields, they

allow electrons to travel with them in a quasi-neutral bunch.

7.2.2 Middle Time: Electrons Surf Along the Wire

The next snapshot is taken at 5.6 ps, shown in Figure 7.3. At this point,

many of the electrons have stopped in the beginning of the wire. These are the

electrons that create the initial falloff and for our purposes of understanding elec-

tron spectra these are the most important. However, in understanding the creation

mechanism for the bump at the end of the wire, we must look to the population

of electrons that appear to be surfing along the edge of the wire.

The surfing electrons are most noticeable in the COLD component at about

1000 µm in the z-direction and along the edge of the wire. In order to understand

the forces that keep these electrons along the wire, we take a lineout of the electric
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Figure 7.3: Injected electron density plots during the second snap-shot of electron

transport simualation at 5.6 ps.

and magnetic fields at the point where the electrons are surfing. Instead of simply

plotting the electric and magnetic fields, we plot the forces that would be exerted

by these fields in the radial direction by electrons traveling at the speed of light

(as they are fully relativistic) in the positive z-direction. These forces are created

by the radial electric field and a azimuthal magnetic field.

We see from the lineouts of these force in Figure 7.4, that the electric

and magnetic forces are comparable in strength. Also, they are in opposition. The

radial electric field is pushing electrons into the wire, since it is created by electrons

that leave the wire and cause it to charge up. However, the azimuthal magnetic

field is actually pushing electrons away from the wire. While we understand the

mechanism to create the electric field, the magnetic field creation is much more

puzzling.

How is this magnetic field created? To understand this we take the total
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Figure 7.4: Radial lineouts of magnetic and electric forces (left). Measured and

inferred magnetic fields (right) during the second snap-shot at 5.6 ps taken near

the surfing electrons at 1000 µm.

encircled current along the radial axis. Using Biot-Savart’s law we can show a large

portion of the magnetic field is generated by this current. Interestingly, this current

is flowing in the direction toward the cone and away from the rear end of the wire.

This is the opposite to the direction that fast electrons are traveling. Thus the

magnetic field generated is opposite of what we would expect if the electrons were

injected into vacuum, where the magnetic field generated by the electrons would

tend to pinch the beam rather than expand it. So what is the mechanism for this

current generation?

The mechanism is as follows: when electrons escape the wire, they create a

large charge imbalance that draws a current as illustrated in Figure 7.5. This causes

an electron current to be drawn from within the wire. Since the charge imbalance

is very large, it draws a very large current. This current cannot escape the wire,

thus even though the net current across the entire radius (including vacuum) would

be forward traveling, the net current within the wire is backward going. Since the

magnetic field is created by encircled current, the total magnetic field is pointing

in a direction so to expell the forward traveling injected electrons. Thus the radial

electric field and the azimuthal magnetic field are intrinsically related, because

they are both stem from the charge differential created by escaping electrons.
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Figure 7.5: Cartoon of the generation of the current thorough charge imbalance.

In (a) fast electrons leave the wire creating an electric field due to the charge

difference. This draws a current (b) through the electric field, and this propagates

through the wire (c). When the leading edge of the current reaches the end of the

wire (d) it can no longer propagate, and creates a backward flowing current. This

process will continue until the wire equilibriates to a constant potential.

7.2.3 Final Time: Electrons Pushed into Wire

The next Figure 7.6 shows the snap-shot at 7.1 ps in time where the surfing

electrons are being pushed back into the wire. At this point, there are a few factors

that stop the charge-imbalance current from flowing or that can potentially reverse

its direction. First, the leading edge of the current reaches the end of the wire.

Since there is only vacuum at the end of the wire, there is no material to keep

drawing current from. Thus this current can no longer be sustained and it reverses.

The other effect is that the hottest electrons (i.e. not the surfing electrons) reach

the end of the wire. As they leave the wire another charge imbalance is created that

draws current to equilibrate. Both of these effects cause the total encircled current

within the wire to flip direction. Thus the magnetic field also flips direction and

the force that previously kept the electrons from falling in the wire, now pushes

them into the wire. As the field information can only propagate at the speed of

light, it reaches the electrons at different times in the bunch. This can be seen in

the Figure 7.6 where electrons after 1250 µm are being pushed into the wire, while

those before are still surfing along the edge. This effect of surfing electrons and

their entry into the wire is the cause of the bump at the end of the wire as seen in

the Kα emission profiles.
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Figure 7.6: Injected electron density plots during the third snap-shot of electron

transport simualation at 7.1 ps.

The field lineouts in Figure 7.7 are taken along the wire at 1400 µm where

electrons are now getting pushed into the wire. One can see that both the electric

and magnetic fields are now pushing forward-going electrons into the wire. Again,

the majority of this magnetic field is caused by the total electron current, which

is now headed in the opposite direction as previously.

Figure 7.8 shows the simulated Kα emission profile, where we see that all

of the important portions of the wire are reproduced and now we have a better

idea of which electrons produced them. The initial falloff is produced mostly by

the colder electrons. The middle flat portion of the wire is produced by hotter

electrons. Finally, the bump at the end of the wire is produced by the colder

electrons, but it is these electrons that are surfing along the edge of the wire. The

electric and magnetic fields that allow these electrons to surf are produced by the

electrical charging of the wire and this is highly dependent on the energy of the
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Figure 7.7: Radial lineouts of magnetic and electric forces (left). Measured and

inferred magnetic fields (right) during the third snap-shot at 7.1 ps taken at 1400

µm where electrons are being pushed into the wire.

Figure 7.8: Simulation of the Kα emission profile using an injected electron dis-

tribution that reproduces the many features of the cone-wire experimental data.

hottest electrons. Thus it is difficult to use the bump as a diagnostic for electron

spectra since it is intertwined with so many different aspects of the system.

7.3 Partition of Energy in the Simulation

One of the most simple ways to look at the differences in the electron

transport is to look at the energy partitioned in the simulation. To illustrate this

we show the energy partition as a function of time in Figure 7.9 for two single

exponential distributions of 0.75 and 2.0 MeV slope temperatures both with a
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total of 10 J of injected energy. We calculate the amount of energy in the fields,

into the protons, into the Au/Cu ions and electrons, and the energy of the injected

electrons that leaves the simulations through the borders (i.e. escapes). As a note,

the reason that the total energy does not add up to 10 J (as was injected) is due

to the fact that LSP does not easily output the ionization energy that goes into

the EOS and this energy would make up the majority of the missing energy.
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Figure 7.9: Partition of energy in the simulation as a function of time for single

temperatures of 0.75 (left) and 2.0 (right) MeV slope temperatures.

We can see that the case of hotter electron slope temperature that much

more energy goes into energy that escapes the Au/Cu target (i.e. fields, protons,

escaping). As we explained in the previous section, this is due to the fact that

hotter electrons have more kinetic energy to escape the electric fields that up on

the target. On the other hand, the colder temperature case has more energy in

the Au/Cu plasmas, since these electrons are less likely to escape.

In Section 6.3.2, we derived an analytical solution to an exponential electron

spectrum that was electrically confined to a target based on the charging induced

by the escaping electrons and a given capacitance of the target. We found in

Section 6.3.2 that this was a function of the total injected energy E divided by

the electron slope temperature T squared. In Figure 7.10, we show the conversion

efficiency of Kα plotted against this E/T 2 for a variety of injected electron energies.
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Notice that the this shows a similar dependence as the Lambert W function that

was derived previously. The main difference from this solution is that at high

values of E/T 2 that the conversion efficiency goes to zero. This is because the

high values of E/T 2 correspond to low value of T , which are often stopped within

the Au cone. This energy mechanism was not included in our analytical solution.

Figure 7.10: Conversion efficiency into Kα photon energy as a function of E/T 2.

From the two previous figures, we see that electric fields play a major role in

the transport of electrons through the target. In fact, in both simulations, nearly

50% of the energy goes into electrons escaping the target and the fields/protons.

For this reason, modeling the fields correctly is very important to get the correct

amount of energy coupling into the wire and to correctly infer the electron spec-

trum. There were two main effects that we made sure to include to model the

electric fields accurately. The first one was setting up the simulation in a 2D cylin-

drical geometry, whereas, in some previous work simulations of wire targets were

modeled in a 2D Cartesian geometry.[49, 50] Electro-static fields falloff like 1/r2 in

a cylindrical geometry and 1/r in a slab geometry. Thus to reproduce the natural

cylindrical symmetry of the wires, we must use a 2D cylindrical geometry.

Another important factor in modeling fields is the inclusion of a proton

layer. In our simulations, we have included a 1 cell thick and 2× 1020 cm−3



108

Figure 7.11: Profile of Kα emission with and without a proton layer.

density proton layer to reproduce the contaminant layer found on the targets used

in laser experiments. This layer is important to include because ionized protons

have a higher charge-to-mass ratio than the Au/Cu ions. Thus the protons are

accelerated much more easily in the electric field and are able to dissipate some

of this field. Because these protons move relatively quickly, they can dissipate

the electric fields on timescales that are within the transport time of the electrons.

Figure 7.11 shows a simulation run with protons compared to one without protons.

Less electron energy is trapped within the wire when protons are included as the

protons dissipate the electric fields and allow more electrons to escape. The total

Kα emission drops about 30% when a proton layer is added to the simulation.

This shows the importance of including the protons layer to attempt to accurately

model the field development in the system.

7.4 Kα Production from Different Electron En-

ergy Bins

To quantitatively assess the Kα x-ray production, we implemented a tech-

nique to keep track of the initial energies of electrons as they emitted Kα x-rays.

This allowed us to assess which energy electrons were responsible for specific por-

tions of the Kα profile and to compare this with our simple understanding devel-

oped in the previous chapter.
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Figure 7.12: Production of Kα binned for the injected energies.

This Kα profile is shown in Figure 7.12, where the different colors represent

different bins of initial electron energies. Notice that electrons below 2.5 MeV falloff

strongly in the initial portion of the wire, while electrons with higher energies have

a relatively constant Kα emission through out the entire distance of the wire. This

is a verification of the simple arguments made in Chapter 6 to show that electrons

above 2 MeV lose energy slowly in a distance of 500 µm.

To show, which electrons are responsible for the total Kα emission, we plot

the normalized cumulative amount of Kα emitted as a function of energy in Figure

7.13. This figure shows that low energies of electrons below about 0.5 MeV do

not emit very many Kα x-rays. As explained in Chapter 6, this is due to the

stopping of electrons in the cone-tip, which will stop electrons below 0.2 MeV

completely. Additionally, the electrons above 10 MeV do not contribute much to

Kα production, because they have high enough energies so that they can escape

the electric fields that build up within the wire. In fact, 95% of the Kα emission

comes from electrons with energies between 0.5 and 10 MeV.
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Figure 7.13: Cumulative Kα production for given bins of injected electron en-

ergies, which show that 95% of the Kα energy is produced by 0.5 to 10 MeV

electrons.

7.5 Temperature of background electrons and Kα

Shifting

In Section 3.4, we discussed the effect that temperature shifting and broad-

ening play on our narrow-bandwidth crystal imager. This showed that if the back-

ground electron temperatures get very hot ∼ 100 eV that the Kα shifting may be

large enough to change the observed Kα x-ray image. To look into this effect, we

have placed temperature probes at various locations within the wire and show how

they develop with time in Figure 7.14. This Figure shows the temperatures rise to

about 50 eV in this simulation, where the peak temperature is at the front of the

wire up to 10 µm and then decays substantially within 100 µm. A 50 eV temper-

ature is not high enough to make a substantial change in the crystal reflectivity.

However, injecting a larger amount of energy may much the maximum tempera-

ture up to near 100 eV values. Thus we should be careful in what conclusions we

draw from the first 100 µm of the simulation, and we should note that this effect

will be the most pronounced in the wire tip, which is while we have previously

cautioned against relying heavily on the initial peak of the Kα profile.
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Figure 7.14: Background electron temperature along the wire at different depths

as a function of time. Here is the wire is initialized at 10 eV.

7.6 Single-Temperature Fits to the Data

Now that we have an understanding of the transport of electrons through

the wire, we want to use this information to translate the experimentally-measured

falloff distance into electron spectra. To this goal, we ran multiple single-temperature

exponential energy distributions of f(E) = exp(−E/T ), where E is the electron en-

ergy and T is the slope temperature. We varied the temperature from 0.1 to 10

MeV and the total energy of the injected electrons from 2.5 to 15 J. All of the in-

jections had the same angular distribution with an angle ∆θ = 45◦. The results of

the simulations were quantified by measuring the integrated Kα and the Kα falloff

distance, as done in the experiments. This created a matrix of the two variables

and allowed interpolation between these values to match both the total Kα and

the falloff for each of the experimental points.

Both the total Kα and the falloff must be matched concurrently, because

there is correlation between them. This is due to the fact that the energy of

electrons that are trapped within the wire is dependent on the fields and, hence, is

non-linear. We show the falloff plotted against temperature for the 5× 1019 W/cm2

case on Trident in Figure 7.15, where these values have already been interpolated

to match the total Kα . From this figure we see a strong dependence on falloff
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with electron temperature. This is what we expected due to the fact that hotter

electrons travel further in the wire and thus produce a longer falloff.

Figure 7.15: Falloff distance vs temperature of a single exponetial with a Kα

energy interpolated to 7.09 mJ to match of the Trident laser at 5× 1019 W/cm2.

The experimental falloff length for this data point is shown as a dotted line.

We show a few points surrounding the best fit to the Trident data in Fig-

ure 7.16 to illustrate how well the simulations fit the experimental data. This figure

gives an idea of the sensitivity of the fits as the 0.75 and 3.5 MeV temperatures

obviously do not fit well with the data.

Figure 7.16: Simulation of the Kα profile for different injected slope temperatures.

Experimental data for the Trident laser at 5× 1019 W/cm2 is plotted in gray.

The best fits to the highest intensity on Trident and Titan are shown in
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Figure 7.17. We can see that the simulations match very well with the data and

that a 2 and 1.25 MeV slope temperature match well with the Trident and Titan

data, respectively. Notice that even with these single exponential fits that we can

match all of the features of the wire, not only the inital falloff, but also the center

flat region and the bump at the end of the wire. This seems relatively unexpected,

because we have not tried to match the bump, we have only tried to match the

initial falloff. The fact that the bump is matched so well makes us think that it is

most likely independent of the electron spectrum and is therefore not really that

useful in the electron energy spectrum determination.
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Figure 7.17: Experimental and simulated Kα lineouts from from (top) the Trident

laser at 5× 1019 W/cm2 and (bottom) the Titan laser at 1× 1020 W/cm2.

This is different than previous published work,[41] where the bump was used

to infer that there were two slope temperatures present in the electron spectrum.

This previous work injected electrons with a Maxwell-Jüttner distribution,[90, 91]

which heavily weights the most energetic part of the spectrum and has few electrons
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at low energies1. Use of this type of energy distribution was most likely the reason

that two temperatures were required. In contrast, Figure 7.17 clearly shows a that

single exponential distribution function is capable of reproducing both the initial

falloff and bump at the end of the wire.

Now that this interpolation technique is shown to be effective in matching

the data, we can extend it to many points in our data and infer electron temper-

ature. Figure 7.18 shows the inferred electron slope temperatures against laser

intensity. This is similar to the plot of falloff distance versus intensity shown in

Section 5.3, but now the falloff distance is replaced with inferred electron slope

temperatures. The trend remains the same: hotter electron temperature with in-

creasing laser intensity. This was assumed to be the case, however, it was not com-

pletely clear that the non-linear behavior of the system would not cause changes

in these previously seen trends. Interestingly, the offset between the high-contrast

data taken on Trident and the low-contrast data from Titan still shows that higher

energies of electrons are observed in the wire at high-contrast.

Figure 7.18: Slope temperatures of electrons inferred from single-temperature

fits to the Trident and Titan data.

1A Maxwell-Jüttner distribution is a formulation of a gas in Boltzmann equilibrium including
relativistic effects. The distribution is described as f(E) = γ

√
γ2 − 1 exp(−E/T ), where E is the

electron kinetic energy, γ is the relativistic factor and T is the characteristic temperature.
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Figure 7.18 also shows dotted lines corresponding to temperature as a func-

tion of
√
Iλ2 as would be expected if the electron acceleration were due to the j×B

mechanism as discussed in Section 2.3.3. It seems that our data is consistent with

such a scaling. However, we must be careful about such a statement, since the

preplasma plays a major role in the acceleration. In these points, the preplasma as

well as the laser intensity may be chaning. To investigate the relationship between

laser intensity, preplasma and electron energy spectrum we will shortly show the

results of modeling of the actual laser pulse incident on the plasma.

7.7 Assumptions in the Electron Distribution

These single exponential transport simulations show a method that gives

an understanding of the electron acceleration changes with variations in the laser

intensity and prepulse. The method has allowed quantitative assessments of elec-

tron spectra to be make for each point of data. However, hidden within these

simulations are many assumptions about the electron distribution. First of all, we

have assumed that the electrons will have the same spatial and temporal profile

as the laser and that they have a 45◦ divergence. Additionally, in this work, we

assumed that the energy distribution of the electrons is a single exponential. How-

ever, this distribution could potentially be a Maxwell-Boltzmann distribution, a

Maxwell-J́’uttner distribution, the summation of multiple exponentials, or another

type of function.

To get an idea of how these parameters change the inferred electron spec-

trum, we used the same interpolation method explained above. However, this time

we tried a 10◦ divergence and we tried adding a second exponential distribution

that contained 50% of the energy. Again, we varied the temperature and the total

electron energy and interpolated to get the best fit for our experiment.

Plotted in Figure 7.19 we show the best fits for the different assumptions.

All of these different profiles appear to match the Trident data at 5× 1019 W/cm2

quite well. However, we see that the slope temperature of the cooler electrons

varied from 2.0 to 1.0 MeV, a difference of about 50%. This shows how such
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Figure 7.19: Fitting the 5× 1019 W/cm2 shot Trident with a single exponential

distribution while varying the angular distribution and injecting a hotter electron

component with a 10 MeV slope temperature.

assumptions affect the inferred slope temperatures.

The next step is to constrain these assumptions. This is done by modeling

the electron spectrum consistently with the laser interaction. This will constrain

the electrons in their temporal, spatial, angular and energy distributions, as based

on the laser intensity and initial preplasma parameters. Such work will allow an

understanding of the electron acceleration directly to determine the causes of the

trends seen in the experimental data.



8 Laser-Plasma-Interaction

Simulations

This chapter shows the setup and results of laser-plasma-interaction (LPI)

simulations to model the laser-acceleration of electrons. These simulations give an

electron distribution that is well defined in time, space, angular divergence and

energy; thus removing many of the assumptions that were made for the transport

simulations presented in the previous chapter. Additionally, the role of preplasma

in creating the electron distributions is investigated, both at high and low-contrast

levels.

8.1 LPI Modeling of Short-Scale Preplasma

These laser-plasma-interaction (LPI) simulations again use the Particle-in-

cell code LSP,[55] as discussed in Chapter 4, now run including the fields of the laser.

The setup of these simulations is shown in Figure 8.1 where we model the regions

of the interaction where we expect the laser to play a large role. These simulations

require a smaller cell size so that we can resolve the electro-magnetic fields of the

laser, which also requires a much smaller time step. Thus we cannot model the

full geometry of the target. We include the cone and preplasma extending 40 µm

from the cone tip, the 10 µm cone-tip and the first 95 µm of the wire. The cellsize

is 20 times smaller than the laser wavelength (i.e. 50 nm) and the time step is

the laser period divided by 133. We included species of Au/Cu ions and electrons,

which were initialized with 10 and 50 particles per cell, respectively. The Au was

initialized at a charge state of 10 and was allowed to ionize via the ADK[59] model

117
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using tabulated ionization energies,[58] as described in Section 2.2.1.
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Figure 8.1: Electron number density in the initial setup of the LPI simuations

with preplasma scale lengths of 0.1 and 3.0 µm.

The spatial profile of the laser is given by the summation of three gaussian

functions as we have described in Table 3.4 of Section 3.1.2, and the temporal

function is a single gaussian with the same profile as the experiment. Unlike the

transport simulations, a 2D Cartesian geometry is used to model the LPI, because

the laser cannot propagate in a 2D cylindrical geometry. For this reason, modeling

of the transport will not be done in these simulations and, instead, the electron

distribution will be handed off to transport simulations to perform comparisons to

experimental data.

One of the main uncertainties in the experiments is the amount of preplasma

that is ablated prior to the arrival of the main pulse of the laser. At high-contrast,

this is extremely difficult to measure, as the scale length is very short. It is also

difficult to model, since it is very dependent on the absorption and EOS of mate-

rials, which are not always well known. In the high-contrast case of Trident, most

of the preplasma is caused by the rising-time of the laser, which rises less than 0.1

ns before the main pulse. Since this rising-time is quite fast and the preplasma

is fairly short, it is difficult to estimate its scale length. In order to bracket this
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uncertainty, we have run three different cases at the highest 5× 1019 W/cm2 case

on Trident for 0.1, 1 and 3 µm of exponential preplasma. The 0.1 and 3 µm cases

are shown in Figure 8.1. Additionally, as discussed further in the text, we will

model the low-contrast Titan laser with a much longer scale length of preplasma.

8.2 Absorption of Laser Energy

One way to understand the effect of changing the preplasma scale length is

to look at the amount of laser energy absorbed in the simulations and the energy

coupled to relativistic electrons that reach the cone-tip. The laser absorption

is determined by subtracting the laser energy leaving the simulation from the

laser energy input into the simulation. The electron coupling is determined by

integrating the net (forwards minus backwards going) electron energy from a plane

at the cone-tip.

!"#$%&'()*+,)-

µ

Figure 8.2: Absorption (circles) and coupling (squares) efficiency of electrons into

the cone-tip. The closed markers represent the high-contrast data by using 0.1 to

3 µm exponential profiles and the open markers represent the low-contrast case

with much longer preplasma.

We show the variation of the absorption and the coupling efficiency in Fig-

ure 8.2 as function of the preplasma scale length. These simulations show that

increasing the preplasma levels from 0.1 to 3 µm increases the absorption from
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20% to 70%. On the other hand, in the same cases, the electron energy passing

through the tip (solid squares) only increases from 20% to 50%. This shows that

electrons generated in simulations with higher levels of preplasma have more diffi-

culty reaching the cone-tip. At lower levels of preplasma, up to 3 µm, this effect is

offset by the increased total absorption of electrons. However, with larger, Titan-

like, levels of preplasma (open circles/squares) this increased difficulty in reaching

the cone-tip leads to a lower amount of energy passing through the tip. This is

consistent with the experimental trends previously presented in Figure 5.5, which

indicate that low-contrast lasers have a 3 times lower coupling into a wire attached

to the cone.
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Figure 8.3: Number density and energy density of electrons in the LPI simulations

of 0.1 and 3 µm preplasma near the peak of the pulse at 1 ps. The dotted white

represents the outline of the inner cone wall.
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The electron number density and energy density for the 0.1 and 3 µm cases

are shown in Figure 8.3 near the peak of the pulse at 1 ps. The color scale used

in the number density plots show densities above critical density in red and lower

densities in gray. The critical density in the 0.1 µm case is very close to the

initial cone-tip, while in the 3 µm case it is located about 20 µm from the tip.

Additionally, the 3 µm case has a much larger amount of under-dense plasma in

which the electrons can be accelerated. This is seen in the wider spread of the

electron energy distribution in space.

As was discussed previously, the electron energy distribution from the 3µm

case shows a much large total amount of electron energy, but these electrons are

divergence and are spread across a large portion of the cone. In contrast to this,

the 0.1 µm preplasma case shows less energy in electrons, but the majority of the

electron energy is much more localized near to the cone-tip. Interestingly, this

trade-off between the total amount of electron energy absorbed and the distance

that the electrons are accelerated away from the cone-tip suggests that there is an

optimal preplasma scale length. This scale length would be found by optimizing

the laser absorption, while keeping the location of electron-accelerated as close as

possible to the cone-tip.

8.3 Accelerated Electron Distributions

In the previous chapter, we inferred the electron spectra by injecting mul-

tiple distributions until they matched the experimentally measured falloffs of Kα

emission along the Cu wire. This method required assumptions to be made for

the temporal, spatial and angular distributions of the electrons. As shown in Sec-

tion 7.7, making different assumptions changed the electron spectrum that was

inferred. In this section, we present the temporal, spatial, angular and energy

distributions of the accelerated electrons as derived from the LPI simulations. The

electrons are observed by collecting the electrons that pass through the tip of the

cone.
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8.3.1 Spatial and Temporal Profiles

Figure 8.4 shows spatial and temporal distributions of electrons from the

0.1 and 3 µm preplasma cases, along with the corresponding incident profiles of

the laser. With a 0.1 µm preplasma the electron profiles are similar to the incident

laser profile. For instance, the electron energy distribution in space has a full-
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Figure 8.4: Time and spatial profiles of electrons going through the cone tip for

the 0.1 and 3.0 µm cases. Plots on the bottom show the laser distribution. The

dotted lines in the spatial plots show the width of the wire.

width-at-half-maximum (FWHM) of 12 µm which is nearly identical to the laser

system, as described in Chapter 3. On the other hand, the electron profiles for the

3 µm case are significantly broadened compared to the laser profile. In the 3 µm
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case, the energy distribution has a FWHM of 33 µm in space, which is about three

times wider than the 0.1 µm case. This broadening is due to the electrons being

initially accelerated at distances further away from the tip of the cone, as shown in

Figure 8.3. Since the electrons have a given angular divergence, this distance gives

the electrons more distance over which to separate. Additionally, this divergence

may change with preplasma, as will be discussed shortly.

The spatial profiles in Figure 8.4 include a dotted line at ±20 µm from the

center to represent the dimensions of the Cu wire attached to the outer cone-tip.

This is important, as only electrons that pass through the Cu wire will generate

Kα x-ray emission and, thus be measured by the experimental diagnostics. Even

though some electrons are outside of this regions in the 3 µm case, most of the

energy is contained within this region, which means that our diagnostics are sensi-

tive to a large portion of the electrons generated by the laser. This is an advantage

of using high-contrast lasers; since the accelerated electrons start closer to the

cone-tip, they should pass through the wire and thus be well constrained by the

experimental measurements.

8.3.2 Angular Distribution

The increased width of the spatial distribution in the 3 µm case may be

amplified by an increased initial divergence of the electrons. Figure 8.5 shows the

average divergence of the electrons in the different cases. The divergence angle θ is

calculated as θ = cos−1 (pz/p), where pz is the electron’s momentum in the forward

direction and p its total momentum. At lower energies, both cases show average

electron divergence angles of around 50◦, and both cases show that the divergence

angle of electrons decreases as the electrons increase in energy. This behavior is

consistent with the ejection angle derived in Section 2.3.3 for the j×B acceleration

mechanism, which also shows that higher energy electrons will have less divergent

ejection angles.

Figure 8.5 also shows that the average angles of the electrons are larger with

more preplasma. One potential reason for this is the presence of large quasi-static

magnetic fields as shown in Figure 8.6. In this figure, the magnetic fields have
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Figure 8.5: Average angles of the electrons in the 0.1 and 3.0 µm preplasma cases.

been averaged along the z-axis to smooth over the periodic fields due to the laser

propagation. The magnetic fields are stronger and exist over longer distances in
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Figure 8.6: Quasi-static, smoothed magnetic fields near the peak of the laser

pulse at 1 ps.

the 3 µm case than in the 1 µm case. These magnetic fields have strengths as high

as 50 MG, which is strong enough to substantially turn electrons. For reference,

the Larmor radii for electrons with kinetic energies of 1 and 10 MeV are 1 and

7 µm, respectively, in a 50 MG field. Thus this mechanism could be responsible

for the increased divergence with magnetic fields. An additional mechanism to
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increase divergence are the ripples in the critical density that can be observed in

the electron density plots in Figure 8.3. These ripples can modify the phase fronts

of the incident laser and thus inject the electrons at more divergent angles.

8.3.3 Energy Spectrum

A feature of the accelerated electrons that is well constrained by the cone-

wire targets, and that is of particular interest to fast ignition research, is the

electron energy spectrum. As shown previously in Chapters 7 and 6, the falloff of

Kα x-ray emission in the wire is able to constrain the energy spectrum. Under-

standing this spectrum is of great interest to the fast ignition so that the energy

deposition within the imploded core can be optimized.

The electron spectrum is obtained using a similar method to the temporal

and spatial distributions, where forward traveling electrons are counted as they

cross the cone-tip and backwards traveling electrons are subtracted. In addition to

this, an adjustment is made for the radial weight of the electrons. Recall that the

laser was injected into the LPI simulations to match the spatial profile measured

in the experiment. Thus, since we are using a 2D Cartesian geometry, this cannot

also match the energy distribution of the experiment. To correct for this, we apply

a radial weighting to the electron distribution by multiplying by r the distance

from the central axis.

The electron spectra for the 0.1 and 3 µm cases are shown in Figure 8.7.

These spectra are fit with a three-temperature exponential to quantify the changes

that occur to the electron spectra with increasing prepulse. The fits to the spectra

are shown in Table 8.1. The need to use multiple exponential distributions to

characterize the electron spectrum shows that the single exponential distributions

assumed in the transport simulations of Chapter 7 do not accurately represent the

spectra, despite the fact that such a distribution is consistent with the experimental

data as shown in Figure 7.17.

With this laser (Iλ2 = 5.6 × 1019 Wcm−2µm2) the ponderomotive energy

(from j × B force, derived in Section 2.3.3) is 2.78 MeV. This is a similar to the

temperature of the hottest portions of the spectrum (T3) for both the 0.1 and 3
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Figure 8.7: Energy spectrum of the electrons passing through the cone-tip for

the 0.1 and 3 µm cases, shown for two different energy windows.

µm cases, which suggest that these are accelerated by the j × B force. On the

other hand, the lower portions of the spectrum (T1) have slope temperatures on

the order of a few hundred keV, which are cooler than the ponderomotive energy,

and thus may not be generated through the j×B mechanism.

The LPI simulations show that increasing the preplasma scale length in-

creases the slope temperature of the electrons, as well as shifting the fraction of

the total energy towards higher energies. This shows that preplasma, as well as

laser intensity, plays a major role in electron acceleration. For a 30x increase in

preplasma scale length the slope temperatures increase by a factor of 2 to 2.5x.



127

Table 8.1: Parameters of triple exponential fits to the electron spectra. Temper-

atures T and fraction of energy F contained for each exponential.

I0 Scale T1 F1 T2 F2 T3 F3

[W/cm2] [µm] [MeV] [MeV] [MeV]

5 · 1019 0.1 0.126 18% 0.732 62% 1.597 20%

1.0 0.216 10% 0.864 45% 3.468 45%

3.0 0.321 8% 1.823 24% 3.342 68%

Recall that the coupling of electrons in the cone-tip also increases by a factor of

2.5x as shown in Figure 8.2. The total number of electrons that pass through

the cone-tip is 6.7× 1016 and 6.1× 1016 for the 0.1 and 3 µm cases, respectively.

Thus an increased preplasma level does not cause a larger number of electrons to

be accelerated, but does cause individual electrons to gain more energy. This is

presumably due to a longer distance over which the laser can interact with the

electron since electrons as there are many more electrons at locations where the

density is below critical.

The LPI simulations have shown how changing the scale length of preplasma

changes the spatial, temporal, angular and energy distribution of accelerated elec-

trons. These show that increased preplasma increases the absorbed fraction of

laser light by increasing the energy that electrons gain from the laser. However,

the larger distance from the cone-tip at which the electrons are born, as well as,

their increased divergence, means that the fraction of the accelerated electrons that

reach the tip decreases with preplasma. The simulations have shown that all of the

characteristics of the electrons are coupled; and all of them depend on the scale

length of preplasma in the simulation. In the simulations of the electron transport

in Chapter 7 we assumed that these were kept constant and that they could be

described by simple analytical functions. Now we move forward from these simple

models and use the LPI generated distributions to compare with the experimental

data.
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8.4 Transport Simulations of LPI-measured Elec-

tron Distributions

Simulations of the laser-plasma-interaction have now been performed to un-

derstand the spatial, temporal, angular and energy distributions of the accelerated

electrons. These will now be compared to experimental data by injecting these elec-

trons into transport simulations. As was discussed in Chapter 7, it is important

to use a 2D cylindrical geometry and to model the full scale of the target, thus the

electron distributions from the LPI simulations must be transfered to the electron

transport simulations. This is done by creating a number of logarithmically spaced

kinetic-energy bins, and then determining the spatial, temporal, angular and en-

ergy distribution for each bin. These electron distributions are then injected at

the cone-tip of the transport simulations, which include all of the physics discussed

previously in Chapter 7. These simulations are run with varied electrons energies

so that the total amount of Kα emission matches the experimentally measured

data.

α
µ

µ

Figure 8.8: Profile of Kα emission from the wire using the injected electron sources

from the 0.1, 1 and 3 µm preplasma LPI simulations and the experimental data

for the 5× 1019 W/cm2 case.

The Kα emission profiles are shown in Figure 8.8. This shows that the elec-
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tron spectrum generated by 3 µm preplasma simulation is the best match to the

experimental data. This is somewhat unexpected, as previous work[18] assumed

that preplasma scale length was on the order of 0.5 µm for ultra-high-contrast

lasers. However, our simulations show that a scale length of 0.1 or even 1 µm does

not create an electron spectrum hot enough to match falloff observed experimen-

tally.

To compare the LPI inferred energy spectrum with the single exponential

injections from of Chapter 7, the best fits to the experimental data are plotted

in Figure 8.9. The striking similarity of the spectra between 1 and 4 MeV shows

the ability of the wires to constrain the electron spectrum at these energies. This

is due to the strong dependence of the falloff on the electron spectrum at these

energies as discussed in Section 6.1 and highlights the robustness of the cone-wires

as a diagnostic for such energies.

Figure 8.9: Comparison of the electron spectrum inferred from LPI modeling and

the spectrum inferred from single temperature injections for the 5× 1019 W/cm2

Trident case.

To understand how the electrons scale with intensity, preplasma scale lengths

of 0.1, 1.8 and 3 µm were performed at 2× 1019 W/cm2 intensity. This is the lowest

intensity in our high-contrast experiments. The same procedure is used to inject

the electron spectrum into the transport simulations. Figure 8.10 shows the corre-

sponding Kα profiles. At this intensity, a 3 µm preplasma yields electrons too hot

to fit the experimental data. Instead, the optimal fit is near 1.8 µm scale length.
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α
µ

µ

Figure 8.10: Profile of Kα emission from the wire using the injected electron

sources from the 0.1, 1.8 and 3 µm preplasma LPI simulations and the experimental

data for the 2× 1019 W/cm2 case.

This implies that a different amount of preplasma is present at different intensi-

ties. In the experiments, the laser intensity is varied to change the intensity, so it

is realistic to assume that this changes the energy in the 0.1 ns rising-time of the

laser and affects the preplasma generation. This shows varying the intensity alone

is not enough to reproduce the electron energy trends observed experimentally;

instead, the preplasma must also be modified.

µ

Figure 8.11: Falloff distance of Kα emission from the simulations at varying

preplasma scale lengths plotted with the experimental data.
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To quantify these comparisons, the simulated Kα profiles are fit with an

exponential profile and the corresponding falloff distances are plotted with the

experimental data in Figure 8.11. This data implies that there is a 1.8 to 3 µm

preplasma present on Trident. As this is significantly larger than the preplasma

expected from previous work,[18] we now go through a simple analytical model to

estimate whether such a large scale length of preplasma is physically reasonable

on Trident.

8.5 Preplasma Expansion Model

As the preplasma scale length inferred from these high-contrast experiments

is somewhat higher than previously expected,[18] an order of magnitude estimate

is now shown to provide confidence that the inferred scale length is physically

reasonable. Unfortunately, such low laser intensities during short (> 0.1 ns) time

scales are difficult to simulate due to uncertainties in the absorption and equation-

of-state of the material. Thus, an analytical model will be used to provide an

order-of-magnitude estimate to show if the 1.8 to 3 µm scale are reasonable.

Let us assume that the preplasma is expanding thermally[60, 61] with a self-

similar solution[62, 92] with the profile, ni ∝ exp
(
x
λp

)
where λp = Cst, Cs =

√
ZT/mi is the sound speed of the gas, Z is the average charge state, T is the

temperature and mi is the ion mass. To generalize this, we assume a temperature

that varies in time and thus the scale length is λp(t) =
∫ t
t0
Cs(t)dt

′. We add an

amount of energy per unit mass for a given time dQ using,

dQ

dt
(t) =

η(I)× I(t)

M(t)
(8.1)

Here I is the laser intensity, η is the absorption fraction of laser energy, and

M is the mass per unit area, which we call the mass for brevity. The intensity

is taken from the measured contrast profile,[18] shown in Section 3.1.3, and the

absorption is calculated as a function of intensity.[92] The calculation of mass is

a very important. Essentially, this depends on the depth at which the energy

is absorbed and the density at which this absorption happens. It is important,

because, as the mass becomes close to zero the heat per unit mass added to the
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system will increase to infinity and the system will explode. To avoid this, we use

a two-limit model that prevents the mass from going to zero by identifying two

extremes that are likely to occur. The first extreme happens when the laser is

incident on an sharp interface, at this point the energy of the laser is absorbed

into a skin depth δ, which is defined as δ = c/ωpe. Where ω2
pe = (4πq2

e/me)Zni0,

and qe is the electron charge, me is the electron mass, ni0 is the ion density of solid

gold, and c is the speed of light in vacuum. For reference, the skin depth of solid

gold is 22 nm at Z = 1 and 2.5 nm at Z = 79.

As the gold expands into vacuum, we build up an exponential falloff, as

described above, with a gradient λp. For our second limiting case, we assume that

laser is absorbed in this exponential falloff that extends up to the critical density

nc of the plasma. Thus we integrate the mass from infinity until the critical density

M = mi

∫ x(nc)

−∞ exp
(
x
λp

)
dx′ = mincλp to get the amount of mass that the laser will

be absorbed into. To combine these two extremes we take the maximum of either

of them:

M = mi ×max (ni0δ, ncλp) (8.2)

The final step is to get the temperature and ionization state from the

amount of energy added to the system. We use the equation-of-state[85, 86] that

was described previously in Section 4.4 to get the temperature and ionization

state of the material. In this model we do not include the energy lost through

radiation and conduction of energy is neglected. These models should be viewed

as a order of magnitude estimate to determine whether are inferred scale lengths

are physically reasonable.

The preplasma scale lengths λp calculated from this model are 3.2 and 3.8

µm for the 2× 1019 and 5× 1019 W/cm2 cases. This is comparable to 1.8 and 3 µm

for the same cases inferred from the LPI simulations. Thus our calculation gives

confidence that the preplasma cases inferred though our modeling are physically

reasonable.
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8.6 LPI Modeling of Large-Scale Preplasma

In addition to the modeling of the high-contrast Trident cases, we are also

interested in understanding the results from the experiment performed on the low-

contrast Titan laser. Recall that the experimental data in Chapter 5 showed two

major differences between the high and low-contrast data. First the coupling of

energy into Kα x-ray emission was 2.7x higher using high-contrast, indicating a

similar increase of electron energy coupling into the wire. Second, the falloff of

Kα x-ray emission was much shorter at low-contrast indicating that electron slope

temperature within the wire is cooler. Using single exponential spectra in the

transport simulations of Chapter 7, such trends were shown be a function of the

electron spectrum and not simply artifacts of the diagnostic. To investigate further,

we look into the acceleration of electrons in the low-contrast case to identify the

causes of these effects.

Figure 8.12: Preplasma density map expected on the Titan laser with 17 mJ of

prepulse energy in 2 ns.

The low-contrast Titan case has a much larger amount of preplasma than

the previous simulations, and as the prepulse is 2 ns in duration, such time scales

are feasible to model hydrodynamically. To obtain a preplasma profile consistent

with a Titan prepulse, hydrodynamic modeling was performed by S. R. Chawla

running the code HYDRA. The laser injected into this simulation has 17 mJ of

energy in a 2 ns pulse, which is representative of the Titan prepulse. This code



134

uses an equation-of-state to model the ionization of the material and allows the

preplasma to expand and absorb laser light. The electron density map created in

this simulation is shown in Figure 8.12. Notice that the critical density of 1021

cm−3 is already 50 µm away from the cone-tip, which is too far back to fit in the

previously used simulation-box. Thus the size of the simulation is increased to

include longer preplasma. However, other than this difference, the simulations to

model the Titan pulse are the same as run for high-contrast.

8.6.1 Coupling at Low-Contrast

At the beginning of this chapter, Figure 8.2 showed that a large amount of

preplasma increases the laser absorption, but decreases the fraction of the absorbed

energy into electrons that reach the cone-tip. This was shown to reduce the energy

of electrons reaching the wire from a peak of 50% using a 3 µm preplasma, to

30% in the Titan-like low-contrast case. This 30% coupling means much electron

energy is lost or does not reach the cone, compared to the 90% absorption of laser

light.
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Figure 8.13: Profiles of the laser intensity, electron number density and electron

energy density of the LPI simulations representing low-contrast Titan interaction

near the peak of the pulse.

To understand the mechanisms of this decrease, the Figure 8.13 shows the
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laser intensity, electron number density and electron energy density of the long-

scale Titan-like preplasma LPI simulation at a time near the peak of the pulse. In

these simulations the critical density is about 70 µm from the cone-tip in contrast

to only 20 µm in the 3 µm preplasma case shown in Figure 8.3. This is one cause

for the decreased amount of electron energy reaching the cone-tip. This figure also

shows a strong modification of the plasma by the laser itself. For instance, the

electron number density map shows a large channel formed in the center of the

plasma, this is formed by the hole-boring mechanism discussed in Section 2.3.2,

where over multiple cycles, the laser pushed electrons out of regions of higher

intensity. Additionally, the laser intensity map shows some filamentation of the

beam as it propagates through the plasma. Both the filamentation and hole-boring

processes are imprinted on the accelerated electrons as can be seen in the electron

energy density map, which shows electrons being generated from within the channel

and shows a number of small filamentary structures.

These simulations look substantially different than high-contrast simula-

tions of 0.1 to 3 µm preplasma shown previously. These previous simulations

showed little modification of the plasma with by the incoming laser and showed

few signs of filamentation. These differences are due to the longer distance over

which the laser has to interact with low density plasma in the low-contrast case.

This allows a longer distance for the non-linear effects to initiate and grow. The

consequence of these non-linear effects is to accelerate electrons that are more

divergence, which will decrease the fraction of electrons entering the cone-tip.

Thus we have identified a reason for the decreased amount of coupling of

energy into the wires at low-contrast. This is due to an increased distance of where

the electrons are accelerated from the cone-tip. It may also be due to the increased

amount of non-linear effects such as hole-boring and filmentation, which create a

more divergence electron beam.

8.6.2 Electron Spectra and Falloff Length at Low-Contrast

The other major difference between the two laser systems was the decrease

in falloff distance in the low-contrast data. This implies that there is a cooler
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electron distribution in the low-contrast case. This is a puzzle, as other work

has shown that increased levels of preplasma should increase the electron slope

temperature.[88] To understand this, we now look at the electron spectrum from

the low-contrast case.

To look at the spectrum near to their source, the electrons are counted

going through a plane located at 40 µm from the cone-tip (-50 µm in Figure 8.13).

To count electrons, they are radially weighted and the backwards going electrons

are subtracted, as done with the high-contrast simulations. The electron spectrum

is also observed at the cone-tip. These spectra are shown plotted along with the

high-contrast spectra as presented previously in Figure 8.7. There is about a factor

of 2.5x decrease in total electron energy at distances 40 µm away from the cone-

tip compared to electrons passing through the cone-tip. However, the shape of the

spectral profiles is relatively unchanged for these two locations. This indicates that

a similar amount of high and low energy electrons were lost in the LPI simulations

as the electrons traveled through the cone.

Figure 8.14: Energy spectrum of electrons in the low-contrast (LC) case com-

pared to the high-contrast (HC) cases. All of the HC spectra are taken at the

cone-tip, while the LC data is take both at the tip and at 40µm from the tip.

The spectra presented from the low-contrast data are shown to be hotter

than the spectrum from the high-contrast simulations. This seems to contradict

the experimental data, which implies that the electron distribution within the
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wire is cooler at low-contrast. This implies that there is another mechanism that

is important in changing the falloff of Kα x-ray emission.

We now investigate the possibility that the electron angular distribution

plays a role in changing the Kα emission profile. The angular profile of electrons

of various energies are shown taken through the plane 40 µm from the cone-tip in

Figure 8.15. The lowest energy electrons, up to around 4 MeV, are relatively sym-

metric around the central axis and are not strongly filamented. These electrons

show a roughly gaussian divergence that is wider than the other electrons. With

higher energy electrons the story is different, the electrons become less symmetric

and the divergence profile becomes more filamented. This shows how the laser pro-

file filaments are imprinted upon the accelerated electrons. The hottest electrons,

above 10 MeV and to some extend, electrons above 4 MeV, are less divergent and

more peaked in a given direction.

Figure 8.15: Angular divergence distributions of the electrons at different energies

taken near the source at 40 µm from the inner cone-tip.

The hotter electrons are not generally pointed straight forward and are

instead angled around 30◦ from the center. Therefore these electrons are not

headed towards the cone-tip. These electrons should be more likely to leave the

target before heading through the tip (i.e. through the side of the cone), especially

as they are higher energy and thus more likely to overcome the fields on the cone

walls. However, Figure 8.14 shows that the electron spectrum at the cone-tip is

not dramatically different in slope, instead it is only lower in total number. This
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suggests that, in our simulations, the number of electrons lost between the source

and the tip is independent of electron energy, despite the fact that many of the

hotter electrons are not directed towards to cone-tip.

Since the LPI simulations require that the modeling is performed using 2D

Cartesian geometry, the fields along the edges of the target will not be modeled

correctly. This is because the target is naturally a cylindrical geometry. Thus the

fields will be stronger in the LPI simulation that they would be in a cylindrical

simulation. This increased field strength may cause even the hottest electrons to

be confined within the cone. Thus the electron spectrum may be hotter in the LPI

simulations than it would be if it was possible to perform 3D simulations.

To compare the results of the low-contrast simulations with the experimen-

tal data, the electron distributions are again injected into transport simulations

using the same methods discussed previously in this chapter to inject electrons into

the cone-tip. The results of this injection are shown in Figure 8.16. This shows

that the falloff distance predicted from the LPI simulated distribution is too long

to match the experimental data.

Figure 8.16: Profile of Kα emission from the wire using the injected electron

sources low-contrast simulations LPI simulation at 5× 1019 W/cm2 and the ex-

perimental data from the 3× 1019 W/cm2 case.

There are a few reasons why LPI simulations do not produce electrons that

quantitatively match the experimental data. As explained in proceeding para-

graphs the LPI simulations were modeled in 2D Cartesian which may have con-
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tained hotter electrons within the cone and lead to a hotter spectrum. Another

major issue is the amount of self-focusing, filamentation and hole-boring observed

in the low-contrast simulations. These processes are highly non-linear and in our

case were modeled in 2D, such modeling neglects 3D effects which may be im-

portant in stabilizing or potentially magnifying such instabilities. Additionally,

modeling the preplasma ablation is a difficult task, as it requires accurate knowl-

edge of the absorption of laser light at different plasma and laser parameters, and

an accurate description of the equation-of-state of the material. Both of which may

be difficult to know with certainty, especially for high atomic number materials.

The difficulty in modeling the laser interaction with large amounts of pre-

plasma once again highlights the advantage of using high-contrast lasers. Since, as

was shown earlier in the chapter, the electrons are accelerated much closer to the

tip and non-linear processes are much less prevalent.

Figure 8.17 plots the falloff distance in the wire against preplasma scale

length. At lower levels of preplasma the falloff distance increases with increased

preplasma. However, with the larger amount of preplasma in the Titan case,

the falloff decreases. This can be attributed to the off-axis angles of the hottest

electrons. As these most energetic electrons do not make it into the wire, the

electron distribution within the wire is colder and thus has a decreased falloff

distance.

µ

µ

Figure 8.17: Simulated falloff distances as a function of preplasma scale length.
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Thus the trends of the falloff distance and preplasma are consistent between

experiment and simulation, since larger values of preplasma show that the falloff

distance begins to decrease. However, as we have explained, for a number of

reasons, the low-contrast simulations are not able to quantitatively match the

experimental data. As expressed previously, this is likely due to the restriction

of using a 2D Cartesian geometry instead of the true 3D that will be present in

experiment.

8.7 LPI Discussion

Simulations were performed to model the high-contrast Trident laser inter-

action with different lengths (0.1 to 3 µm) of initial preplasma. These simulations

show that the electron spectrum gets hotter and the absorption of laser light in-

creases with increased initial preplasma scale length. Also, this increase is coupled

to broadening of each of the temporal, spatial and angular distributions. These

changes decrease the fraction of the absorbed electrons that reach the inner tip

of the cone, though the total number electrons reaching the tip increases. Knowl-

edge of the complete electron distribution is used to inject electrons into transport

simulations to allow comparison to experimental data. These simulations show

that a 1.8 to 3 µm preplasma scale length agrees with the experimental data. This

amount of preplasma is shown to be physically reasonable based on a simple energy

deposition model using the rising-time of the laser.

Additionally, simulations of longer scale preplasma were run to represent the

low-contrast Titan case. This simulation showed a significantly different interaction

of the laser with the target from the high-contrast case. Non-linear processes such

as filamentation and hole-boring played a major role in the interaction and such

processes were imprinted on the accelerated electrons. This interaction showed a

major decrease in the coupling of electrons into the cone-tip, which was previously

seen in the experimental data. On the other hand, the LPI simulations of low-

contrast did not give a quantitative fit to the experimentally observed Kα falloffs.

This is most likely due to the complicated nature of the long scale preplasma
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interaction, which is not modeled properly in a 2D geometry.

To our knowledge, this integration of both LPI and transport simulations

is the most complete study of accelerated electron distributions using cone-wire

targets to date. Using LPI to model all of the electron quantities means that this

work does not rely on the ad-hoc assumptions our previous work in respect to

the spatial, temporal and angular distributions of electrons. The removal of such

assumptions gives more confidence that the spectra and distributions inferred in

this study are more accurate representations of the accelerated electrons observed

in experiment.



9 Summary

This dissertation has studied the acceleration of electrons by ultra-high-

contrast lasers using both experimental methods, analytical calculations and large-

scale simulations. This work is of particular interest to the fast ignition (FI) con-

cept of inertial confinement fusion, where these electrons deposit energy within

an imploded core to ignite fusion reactions. Previous work[38–41] has shown that

large amounts of preplasma (i.e. material ablated prior to the main pulse inter-

action) can dramatically reduce the coupling of these electrons into targets with

similar geometries as the imploded core. For the first time, this dissertation inves-

tigated the acceleration electrons using a FI-relevant cone-wire geometry, where

this preplasma was significantly reduced. This was done experimentally using an

ultra-high-contrast laser, where the laser intensity coming nanoseconds prior to

the main pulse, which is normally the cause of preplasma, has been eliminated.

These experiments were interpreted using a combination of simulations to model

both acceleration of electrons by the laser and the subsequent transport of these

electrons through the target. These models allowed the full distribution (e.g. in

space, time, angle, energy) of the electrons to be inferred and compared quanti-

tatively to experiment. Such comprehensive modeling of these cone-wire target

interactions has never before been realized.

The cone-wire targets used in this work were chosen with a similar geometry

to the cone-guided FI concept. In the experiments, a hollow Au cone with a 10 µm

thick tip was aligned so that the laser traveled down the middle and was incident

on the 30 µm diameter inner tip. The outer tip of the cone was attached to a 40 µm

diameter Cu wire, which allowed electrons to be observed through theie emission

of Kα x-ray emission. The targets were irradiated at intensities from 2× 1019

142
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to 5× 1019 W/cm2 by the ultra-high-contrast Trident laser at the Los Alamos

National Laboratory. Measurement of the total amount of Kα x-ray generation

from the wire allowed the coupling of electron energy into the wire to be assessed;

this was found to be independent of the laser intensity. Imaging the falloff of Kα x-

ray emission was used to infer an effective path length of electrons within the wire

to diagnose their energy spectrum. A strong dependent on the laser intensity was

found, indicating that electrons increase in energy with increased laser intensity.

To compare the ultra-high-contrast Trident case to conventional lasers,

identical targets were irradiated by the low-contrast Titan laser at the Lawrence

Livermore National Laboratory at intensities from 1019 to 1020 W/cm2. Unlike the

Trident laser, the Titan laser has amplified spontaneous emission (ASE) prepulse.

The ASE prepulse irradiates the target with 1-17 mJ of energy in a time around

2 ns prior to the main pulse of the laser, which contained 16-160 J of energy in

0.7 ps. This amount of ASE is a hundred million (10−8) times less intense than

the main pulse, yet it can ablate material extending hundreds of microns from the

initial target surface. Our previous experiments using cone-wire targets[41] showed

a 100x increase in the prepulse energy reduced electron coupling into the wire by

a factor of 10x due to the increased distance of the critical surface from the initial

target surface. Instead of increased prepulse energy, this dissertation explores the

coupling of electrons into a wire when the ASE prepulse is effectively eliminated

using high-contrast, which until now has not been quantitatively assessed. Mea-

surement of the total Kα x-ray emission from the wire indicated that 2.7x more

electrons are coupled into the wire at high-contrast, indicating that reduction of

ASE prepulse is worthwhile investment for laser systems relevant to FI research.

To quantitatively understand the role of preplasma on electron genera-

tion simulations of the laser-plasma-interaction (LPI) were performed using the

particle-in-cell (PIC) code LSP.[55] These simulations investigated exponential pre-

plasma scale lengths from 0.1 to 3 µm, as well as the longer preplasma expected

from the low-contrast Titan laser. These simulations showed that the absorption

of laser light increases dramatically with preplasma from around 20% at low, 0.1

µm, scale lengths to nearly 90% at low-contrast-type preplasma. However, this
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increase in absorbed energy is not all given to electrons that will reach the wire.

Instead the electrons are broadened in space in space, which is caused by the longer

distance over which electrons have to diverge and their increased divergence angle

with preplasma. This leads to a reduction in the amount of energy that reaches

the cone-tip at long preplasma scale lengths and is the cause for the 2.7x decrease

in coupling with low-contrast-type preplasma observed.

The electron energy spectrum generated from the LPI simulations was char-

acterized by a three-temperature exponential distribution function. The hottest

part of the spectrum was characterized by a temperature on the order of the so-

called ponderomotive energy (2.78 MeV at 5× 1019 W/cm2, λL = 1.054 µm), while

the lowest temperature was on the order of a few hundred keV. Increasing the pre-

plasma scale length from 0.1 to 3 µm caused the slope temperature of these fits to

increase by about a factor of 2.5x. The total number of accelerated electrons was

roughly the same in these simulations. This indicates that the increase in absorbed

energy with longer preplasma levels is caused by individual electrons being accel-

erated to higher energies rather than an increase in the total number of electrons

being accelerated. This is consistent with a longer length over which electrons can

gain energy from the laser.

The electron distributions determined from LPI simulations were next com-

pared to the experimental data. This was done by modeling the electron transport

through the cone-wire target using, once again, the PIC code LSP. Unlike the LPI

simulations, which focused on the region of laser interaction, these simulations

included the full-scale geometry of the target and included large boundaries, so

that electric and magnetic fields developing along the target were fully modeled.

The electrons characterized in the LPI simulations were injected at the cone-tip

and traveled through the target to produce Kα x-ray emission that was compared

with the experimental data. These simulations were able to reproduce all of the

important features of the Kα x-ray emission profile.

One interesting feature in the experimental data is a bump of emission at

the end of the wire. Using the transport simulations this bump was shown to

be caused by electrons that surf along the edge of the until they reach the end,



145

at which point they are pushed into the wire and create the bump of emission.

These surfing electrons are held along the wire by strong radial electric fields that

create electric potentials on the order of MV. In opposition to this, an azimuthal

magnetic field on the order of MG, creates a force which pushes electrons away

from the wire. This magnetic field is caused by electrons traveling in opposition

to the forward traveling electrons. Once electrons reach the end of the wire this

opposing current can no longer propagate. Thus there is no magnetic field to push

the surfing electrons away from the wire and they are pushed into the wire by the

radial electric field, thus creating a bump of Kα emission.

In terms of understanding the electron spectrum, the most important fea-

ture of the Kα emission profile is the initial falloff; essentially, the effective path

length of electrons in the wire. The transport simulations, and supporting ana-

lytical calculations, show that the slope of this falloff is sensitive to electrons with

kinetic energies around 0.5 to 2.5 MeV. Thus matching this slope gives confidence

in the validity of the LPI simulated electrons. The electron spectrum that best

matches the falloff of the 5× 1019 W/cm2 experimental data at high-contrast is

found with an initial 3 µm preplasma scale length. This implies that such a scale

length was present even with the ultra-high-contrast Trident laser.

A 3 µm preplasma scale length is somewhat unexpected, as previous simu-

lations[18] had supposed that only a minimal (0.5 µm) scale length was present for

such high-contrast interactions due to the lack of ASE prepulse. However, the Tri-

dent laser does have a finite rising-time, which occurs less than 0.1 ns prior to the

main pulse. The effect of this rising-time is investigated using a simple analytical

calculation: Using the experimental measurement of the rising-time of the laser[18]

the target is allowed to absorb energy with a given absorption efficiency.[92] The

increase in energy causes the target to increase in temperature and ionization state

through an equation-of-state,[85, 86] which then cause the target to expand. Such

calculations verify that many microns of preplasma can indeed be ablated from

the 0.1 ns rising-time of the Trident laser.

In summary, this dissertation has coupled LPI and transport simulations

to understand laser phenomena using ultra-high-contrast lasers and made quan-
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titative comparisons with experimental data. Such an integrated approach is a

recent development in FI research and the ability to get quantitative agreement

between simulations and experiment is a testament to the large amount of previ-

ous research that has gone into developing these codes to include many important

pieces of physics.

This work shows promise for Fast Ignition research in that through reduc-

tion of the ASE prepulse to negligible levels the coupling of electrons into the wire

is increased by nearly a factor of 3x. Such information shows upgrading laser facil-

ities to incorporate ultra-high-contrast is a worthwhile investment. The knowledge

that even the rising-edge of the laser may ablate a relatively large amount of pre-

plasma will be quite useful ultra-high-contrast facilities become more wide spread.

Additionally, the detailed investigation of low (0.1 to 3 µm) preplasma scale length

will aid researchers in understanding how the electron energy spectrum, as well as

the spatial, temporal and angular distributions, can change with preplasma.



A Transmission of a 3D cylinder

We begin by setting up a cylinder along the z-axis and we place an observer

at infinity so that this person is always looking perpendicular to the y-axis, this is

justified if the distance to observer >> R. There is no dependence on z so we will

treat the problem as a circle for now (see Figure A.2) and do the z-axis later.

!"

!"

#"

$"

#"
%&!'#("

%)&#("

Figure A.1: Sketch of a circle being viewed by observer at x = ∞. L is the

distance that the observer must view to see the point at (x,y) and L0 is the length

parallel to the x-axis from the outer edge of the cricle to the y-axis.

The emission of the circle is dE = ρe−L/λdxdydz, where ρ is the emission

density, L is the length to the observer and λ is the attenuation length. Which

gives following equation (A.3). Next we notice that the L = L0 − x and through

the pythagorean theorem L0 =
√
R2 − y2.

E(R, λ, ρ) = ρ

∫ R

−R

∫ L0

−L0

∫ H

0

exp

(
−L
λ

)
dzdxdy (A.1)

= ρ

∫ R

−R

∫ L0

−L0

∫ H

0

exp

(
−L0 − x

λ

)
dzdxdy (A.2)
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The integral over z is simple and x is not so difficult.

E(R, λ, ρ) = Hρλ

∫ R

−R

[
1− exp

(
2L0

λ

)]
dy (A.3)

= 2Hρλ−Hρλ
∫ R

−R
exp

(
2
√
R2 − y2

λ

)
dy (A.4)

We will define the rightmost side of the equation as ψ(R, λ) for simplicity (eqn(A.5)).

Then we do a substitution into θ by making a triangle so that R cos θ =
√
R2 − y2

and dy = R cos θdθ.

ψ(R, λ) ≡
∫ R

−R
exp

(
− 2
λ

√
R2 − y2

)
dy (A.5)

=

∫ π/2

−π/2
exp

(
− 2
λ
R cos θ

)
R cos θdθ (A.6)

This has a solution that can be found at Wolfram|Alpha[93] and it is:

ψ(R, λ) = πR

[
L−1

(
2R

λ

)
− I1

(
2R

λ

)]
(A.7)

Where In(z) is the is the modified Bessel function of the first kind and

Ln(x) is the modified Struve function. Now we can show that the final solution of

E is:

E(R, λ, ρ) = 2HρλR−HρλπR
[
L−1

(
2R

λ

)
− I1

(
2R

λ

)]
(A.8)

Now for an observer looking at the view with a given view angle γ, the

length that is seen is In order to include any view angles of the observer of the

wire, we can see that the actual length seen is LV = L/ cos γ. To make this easier

on ourselves we can say that e−LV /λ = e−L/λγ , where λγ = λ cos γ.

Substituting in λγ for λ we get the final answer. Note that we are neglecting

the edges of end edge of the wire, where z ≈ H for γ > 0 or z ≈ H for γ < 0.

However, we are more interested in the transmission, T , of the wire so we will set

ρ = (πR2H)−1. Also, shown as a function of Z ≡ R
λ cos γ

.

T (R, λ, γ) =
λ cos γ

R

[
2

π
− L−1

(
2R

λ cos γ

)
+ I1

(
2R

λ cos γ

)]
(A.9)
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Figure A.2: Sketch of a cylinder where γ is the view angle, L is the length to

observer without the view angle and LV is the actually length to observer including

the view angle.

T (Z) =
1

Z

[
2

π
− L−1(2Z) + I1(2Z)

]
(A.10)

For a wire with R = 20µm, λ = 22.21 (Cu at 8037.8 eV), ρ = πR2 and

γ = 45◦, the transmission is T = 0.415 and the opacity, 1
T

is 2.41.
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Figure A.3: The transmission, T (R = 20µm, λ = 22µm, γ), and opacity (≡ 1/T )

plotted against the view angle of the wire, γ.

The wires used in most of our experiments were 20 µm radius, Cu wires.

Cu emits Kα photons at 8 keV, the attenuation length of Cu at this energy is 22

µm. Using the equation above transmission, T (R, λ, γ), for a given view angle can

be found. This is shown in Figure A.3 and Table A.1.
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Table A.1: Transmission, T (R = 20µm, λ = 22µm, γ), and opacity (≡ 1/T ) for

view angles, γ.

View Angle Transmission Opacity

0◦ 0.52 1.94

5◦ 0.52 1.94

10◦ 0.51 1.96

15◦ 0.51 1.98

20◦ 0.50 2.01

25◦ 0.49 2.05

30◦ 0.47 2.11

35◦ 0.46 2.19

40◦ 0.44 2.28

45◦ 0.41 2.41

50◦ 0.39 2.58

55◦ 0.36 2.81

60◦ 0.32 3.13

65◦ 0.28 3.61

70◦ 0.23 4.35

75◦ 0.18 5.64

80◦ 0.12 8.3
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[90] F. Jüttner, Annalen der Physik 340, 145–161 (1911).

[91] J. Dunkel and P. Hänggi, Physics Reports 471, 1–73 (2009).

[92] P. Mora, Physics of Fluids 25, 1051 (1982).

[93] Wolfram|Alpha, www.wolframalpha.com (2012).


